Raman spectrum model transfer method based on Cycle-GAN

计算机科学 人工智能 深度学习 转化(遗传学) 领域(数学分析) 模式识别(心理学) 算法 数据挖掘 数学 生物化学 基因 数学分析 化学
作者
Zilong Wang,Zhe Yang,Xin Song,H. Zhang,Bo Sun,Junzhi Zhai,Siwei Yang,Yuhao Xie,Pei Liang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:304: 123416-123416 被引量:1
标识
DOI:10.1016/j.saa.2023.123416
摘要

The disparity in hardware quality among various models of Raman spectrometers gives rise to variations in the acquired Raman spectral data, even when the same substance is collected under identical external conditions. Conventionally, models constructed using data obtained from a particular instrument exhibit issues such as limited applicability or poor performance when deployed to different instruments. Currently, numerous model transfer algorithms grounded in chemometrics have been developed, all aiming to establish a mapping relationship capable of transforming spectral data from the source domain to the target domain. With the advancement of deep learning techniques, the utilization of deep learning enables the effective resolution of nonlinear mapping relationships between two spectral vectors. In the field of image translation, the Cycle-Consistent Adversarial Networks, Cycle-GAN, has already achieved mutual transformation between two distinct style images. However, due to images being multidimensional matrix data, unlike one-dimensional spectral data vectors, we have constructed a deep learning network based on Cycle-GAN for vector-to-vector transformation. This network allows the direct conversion of spectral data from the source domain to the target domain, without requiring parameter adjustments or other operations. Compared with traditional chemometric methods, our method is more intelligent and efficient. Finally, the cosine similarity between the source domain data and the transformed target domain data exceeds 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实口红完成签到,获得积分10
3秒前
4秒前
Orange应助东京芝士123采纳,获得10
6秒前
Akim应助张羽翀采纳,获得10
9秒前
蛋白发布了新的文献求助10
9秒前
愚者gggg完成签到,获得积分10
9秒前
13秒前
zjk关闭了zjk文献求助
16秒前
16秒前
mepumpkin发布了新的文献求助10
16秒前
Mandy完成签到 ,获得积分10
17秒前
mfpp完成签到,获得积分10
18秒前
脑洞疼应助wuyan采纳,获得10
18秒前
19秒前
19秒前
duxiao发布了新的文献求助10
21秒前
望北楼主发布了新的文献求助10
21秒前
Venovenom发布了新的文献求助100
23秒前
qi0625完成签到,获得积分10
24秒前
excellent_shit完成签到,获得积分10
27秒前
29秒前
29秒前
29秒前
健忘白关注了科研通微信公众号
30秒前
31秒前
俭朴的凡之完成签到,获得积分10
31秒前
阳光BOY发布了新的文献求助10
34秒前
一往如常发布了新的文献求助10
34秒前
spirit发布了新的文献求助10
35秒前
Andy完成签到,获得积分10
37秒前
37秒前
爆米花应助阳光BOY采纳,获得10
41秒前
爆米花应助内向寒云采纳,获得30
42秒前
43秒前
行道吉安发布了新的文献求助10
44秒前
49秒前
51秒前
51秒前
橙花完成签到 ,获得积分10
52秒前
52秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962151
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140723
捐赠科研通 3241093
什么是DOI,文献DOI怎么找? 1791332
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803382