MISL: Multi-grained image-text semantic learning for text-guided image inpainting

修补 计算机科学 人工智能 语义学(计算机科学) 图像(数学) 鉴别器 光学(聚焦) 编码器 对象(语法) 像素 自然语言处理 计算机视觉 模式识别(心理学) 判决 词(群论) 数学 操作系统 探测器 光学 物理 电信 程序设计语言 几何学
作者
Xingcai Wu,Kejun Zhao,Qianding Huang,Qi Wang,Zhenguo Yang,Ge‐Fei Hao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:145: 109961-109961 被引量:4
标识
DOI:10.1016/j.patcog.2023.109961
摘要

Text-guided image inpainting aims to generate corrupted image patches and obtain a plausible image based on textual descriptions, considering the relationship between textual and visual semantics. Existing works focus on predicting missing patches from the residual pixels of corrupted images, ignoring the visual semantics of the objects of interest in the images corresponding to the textual descriptions. In this paper, we propose a text-guided image inpainting method with multi-grained image-text semantic learning (MISL), consisting of global-local generators and discriminators. More specifically, we devise hierarchical learning (HL) with global-coarse-grained, object-fine-grained, and global-fine-grained learning stages in the global-local generators to refine the corrupted images from the global to local. In particular, the object-fine-grained learning stage focuses on the visual semantics of objects of interest in corrupted images by using an encoder-decoder network with self-attention blocks. Not only that, we design a mask reconstruction (MR) module to further act on the restoration of the objects of interest corresponding to the given textual descriptions. To inject the textual semantics into the global-local generators, we implement a multi-attention (MA) module that incorporates the word-level and sentence-level textual features to generate three different-grained images. For training, we exploit a global discriminator and a flexible discriminator to penalize the whole image and the corrupted region, respectively. Extensive experiments conducted on four datasets show the outperformance of the proposed MISL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助潇洒小天鹅采纳,获得30
刚刚
1秒前
1秒前
TUTUKing完成签到,获得积分10
1秒前
小亮哈哈发布了新的文献求助10
2秒前
打工肥仔应助晓薇采纳,获得30
2秒前
3秒前
依云矿泉水完成签到,获得积分10
4秒前
LiangHu发布了新的文献求助10
4秒前
震动的问寒完成签到,获得积分10
4秒前
背后丹妗发布了新的文献求助10
5秒前
111完成签到,获得积分10
5秒前
糯米糍发布了新的文献求助20
6秒前
寒江雪完成签到,获得积分20
6秒前
6秒前
11发布了新的文献求助10
7秒前
7秒前
小卢完成签到,获得积分10
8秒前
坚强三德发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
小二郎应助TresAU采纳,获得10
11秒前
大气如雪完成签到,获得积分20
11秒前
11秒前
zzx完成签到,获得积分10
11秒前
睿智鱼仔发布了新的文献求助10
13秒前
Owen应助翻似烂柯人采纳,获得10
13秒前
专注白昼发布了新的文献求助10
13秒前
13秒前
子车定帮发布了新的文献求助10
13秒前
coolplex完成签到,获得积分10
13秒前
上官若男应助青山采纳,获得10
14秒前
夏夏发布了新的文献求助10
14秒前
搔扒完成签到,获得积分10
14秒前
acuter发布了新的文献求助10
15秒前
15秒前
dypdyp完成签到,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271