Lightweight Single Shot Multi-Box Detector: A fabric defect detection algorithm incorporating parallel dilated convolution and dual channel attention

计算机科学 卷积(计算机科学) 探测器 算法 卷积神经网络 频道(广播) 特征(语言学) 特征提取 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 图像(数学) 哲学 计算机网络 电信 语言学
作者
Shuhan Liu,Limin Huang,Yingbao Zhao,Xiaojing Wu
出处
期刊:Textile Research Journal [SAGE]
卷期号:94 (1-2): 209-224 被引量:4
标识
DOI:10.1177/00405175231202817
摘要

For the textile industry, fabric defect detection is an important part of production. In order to make the automatic fabric defect detection system used in production sites, this article proposes a lightweight algorithm Lightweight Single Shot Multi-Box Detector (LW-SSD) to address the issues of low detection accuracy, high computational complexity, and difficulty in deploying on hardware devices with limited computing power in fabric defect detection. Firstly, MobileNetv3 is introduced as the backbone network to reduce the number of model parameters. Secondly, in the feature fusion module, down-sampling stacking is used to fuse the feature maps processed by maximum pooling and regular 3 × 3 convolution, respectively, to enhance the generalization and small target feature extraction capability of the network. Then, the dilated convolution is incorporated into the Inceptionv3 to form a multi-branch parallel dilated convolution module, which can expand the receptive field of the feature layer and enhance the extraction of the target information. Finally, a dual-channel attention module is added, which adds the maximum pooling operation based on the efficient channel attention for deep convolutional neural networks (ECA) channel attention mechanism to highlight defect features and suppress background noise features. The experiments show that the accuracy of the system is improved while maintaining the faster detection speed. Among them, the LW-SSD algorithm has an accuracy improvement of 10.03% on the self-made dataset, a reduction of 58% in the number of model parameters compared to the Single Shot Multi-Box Detector (SSD) algorithm, and the detection speed reaches 48 frames per second.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鬼鬼的眼睛完成签到,获得积分10
1秒前
天台飞船完成签到 ,获得积分10
1秒前
myth发布了新的文献求助10
1秒前
2秒前
mcsmdxs发布了新的文献求助10
2秒前
许nana发布了新的文献求助10
3秒前
活力的青文完成签到,获得积分10
3秒前
3秒前
热固性塑料完成签到,获得积分10
3秒前
Ava应助wangqi采纳,获得10
3秒前
4秒前
4秒前
一条热带鱼完成签到,获得积分10
4秒前
研友_Z60NmL完成签到,获得积分10
4秒前
isjj发布了新的文献求助10
4秒前
5秒前
5秒前
LNN完成签到,获得积分10
5秒前
5秒前
繁荣的柏柳完成签到,获得积分10
5秒前
6秒前
6秒前
甜美青槐完成签到,获得积分10
7秒前
哈哈完成签到,获得积分10
7秒前
聪明火车完成签到,获得积分20
7秒前
爆米花应助星空_采纳,获得30
7秒前
汉堡包应助deer采纳,获得10
8秒前
琳琳关注了科研通微信公众号
8秒前
时尚的青丝完成签到,获得积分20
8秒前
yipyip发布了新的文献求助20
8秒前
上官若男应助庸人自扰采纳,获得10
9秒前
9秒前
Gilana发布了新的文献求助10
9秒前
DDJoy完成签到,获得积分10
9秒前
wf发布了新的文献求助10
9秒前
波粒海苔完成签到,获得积分10
10秒前
mzc发布了新的文献求助10
10秒前
10秒前
FashionBoy应助isjj采纳,获得50
10秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226600
求助须知:如何正确求助?哪些是违规求助? 2874946
关于积分的说明 8188627
捐赠科研通 2541933
什么是DOI,文献DOI怎么找? 1372477
科研通“疑难数据库(出版商)”最低求助积分说明 646489
邀请新用户注册赠送积分活动 620853