Lightweight Single Shot Multi-Box Detector: A fabric defect detection algorithm incorporating parallel dilated convolution and dual channel attention

计算机科学 卷积(计算机科学) 探测器 算法 卷积神经网络 频道(广播) 特征(语言学) 特征提取 人工智能 噪音(视频) 模式识别(心理学) 人工神经网络 图像(数学) 电信 语言学 哲学 计算机网络
作者
Shuhan Liu,Limin Huang,Yingbao Zhao,Xiaojing Wu
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:94 (1-2): 209-224 被引量:9
标识
DOI:10.1177/00405175231202817
摘要

For the textile industry, fabric defect detection is an important part of production. In order to make the automatic fabric defect detection system used in production sites, this article proposes a lightweight algorithm Lightweight Single Shot Multi-Box Detector (LW-SSD) to address the issues of low detection accuracy, high computational complexity, and difficulty in deploying on hardware devices with limited computing power in fabric defect detection. Firstly, MobileNetv3 is introduced as the backbone network to reduce the number of model parameters. Secondly, in the feature fusion module, down-sampling stacking is used to fuse the feature maps processed by maximum pooling and regular 3 × 3 convolution, respectively, to enhance the generalization and small target feature extraction capability of the network. Then, the dilated convolution is incorporated into the Inceptionv3 to form a multi-branch parallel dilated convolution module, which can expand the receptive field of the feature layer and enhance the extraction of the target information. Finally, a dual-channel attention module is added, which adds the maximum pooling operation based on the efficient channel attention for deep convolutional neural networks (ECA) channel attention mechanism to highlight defect features and suppress background noise features. The experiments show that the accuracy of the system is improved while maintaining the faster detection speed. Among them, the LW-SSD algorithm has an accuracy improvement of 10.03% on the self-made dataset, a reduction of 58% in the number of model parameters compared to the Single Shot Multi-Box Detector (SSD) algorithm, and the detection speed reaches 48 frames per second.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赵梓昂完成签到,获得积分10
刚刚
1秒前
酷波er应助小白采纳,获得10
1秒前
歆琉完成签到,获得积分10
1秒前
药宫完成签到,获得积分10
1秒前
充电宝应助zhuan采纳,获得10
3秒前
3秒前
好困发布了新的文献求助30
3秒前
smottom应助626采纳,获得40
4秒前
执着卿完成签到,获得积分10
4秒前
卫子萌完成签到,获得积分10
4秒前
顾矜应助pxy采纳,获得10
4秒前
4秒前
silver_lin发布了新的文献求助10
5秒前
小二郎应助暴躁的海豚采纳,获得10
6秒前
gean发布了新的文献求助10
6秒前
6秒前
星辰大海应助Minguk采纳,获得10
7秒前
Zoe完成签到,获得积分10
8秒前
慎二发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
科目三应助gean采纳,获得10
9秒前
fc小肥杨完成签到,获得积分10
9秒前
9秒前
小雷要学习完成签到,获得积分10
9秒前
10秒前
Allen224发布了新的文献求助10
10秒前
11秒前
仔仔仔平完成签到,获得积分10
11秒前
12秒前
13秒前
自信安南完成签到,获得积分10
13秒前
GIANTim完成签到,获得积分10
13秒前
抹茶牛奶配布丁完成签到 ,获得积分10
13秒前
二十八画生完成签到 ,获得积分10
13秒前
1b关闭了1b文献求助
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970287
求助须知:如何正确求助?哪些是违规求助? 3515034
关于积分的说明 11176923
捐赠科研通 3250301
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805039