热敏电阻器
材料科学
微电子机械系统
制作
硅
压力传感器
光电子学
基质(水族馆)
薄膜
微系统
微型加热器
电气工程
纳米技术
机械工程
医学
地质学
工程类
海洋学
替代医学
病理
作者
Weiwen Feng,Peng Li,Haozhi Zhang,Ke Sun,Wei Li,Xinxin Li
标识
DOI:10.1088/1361-6439/acee8b
摘要
Abstract Flexible pressure sensors and temperature sensors are widely used in various fields because of their advantages in high flexibility, good shape retention and extremely small thickness. However, it is quite challenging to fabricate ultra-thin flexible pressure sensors with reliable sensing performance. In this work, we propose a new type of silicon–polymer heterogeneously integrated MEMS flexible sensor with an ultra-thin silicon-based absolute pressure sensing element and a thermistor. In the study, a flexible MEMS fabrication process is developed, which enables simultaneous fabrication in two different substrates and self-release of the thin and slim flexible sensor. The front-end section of the flexible sensor is with the width as 125 μ m, length as 3.2 cm and total thickness as 12 μ m, where the integrated silicon substrate thickness is only 3 μ m. The sensor takes a slender shape to allow for medical invasive measurement by inserting it into a slim medical catheter or a syringe needle-tube. The sensitivity of the fabricated ultra-thin absolute pressure sensor is tested as 45.2 μ V kPa −1 under 3.3 V supplied voltage, with the nonlinearity as only ±0.16% FS. The sensitivity of the thermistor is 10.4 Ω °C −1 in the range of 0 °C–100 °C. Moreover, the polysilicon thermistor can also serve as a micro-heater, where an electric heating power of 107 μ W results in a temperature increase of 13.5 °C. With ultra-thin slim structure and satisfactory performance, the MEMS flexible sensor is promising in various fields like biomedical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI