Ensemble XGBoost schemes for improved compressive strength prediction of UHPC

抗压强度 堆积 固化(化学) 相对湿度 计算机科学 数学 算法 机器学习 材料科学 复合材料 化学 地理 有机化学 气象学
作者
May Huu Nguyen,Thuy‐Anh Nguyen,Hai‐Bang Ly
出处
期刊:Structures [Elsevier BV]
卷期号:57: 105062-105062 被引量:19
标识
DOI:10.1016/j.istruc.2023.105062
摘要

XGBoost is a promising machine learning method capable of predicting essential concrete properties and enhancing advanced concrete design. However, its underlying version still requires further study and development. In this investigation, the effectiveness of advanced XGBoost versions, including Ada-XGBoost, Bagging-XGBoost, Stacking-XGBoost, and Voting-XGBoost, to predict the compressive strength (CS) of Ultra-high-performance concrete (UHPC) was accessed. A database covering 810 results from in the literature, including 15 inputs, such as 12 UHPC components, two curing conditions, and sample age, was utilized for training the models. The performance criteria for the five models, including RMSE, MAE, and R2, were evaluated using a combination of 10-Fold CV and Monte Carlo (MC) simulation. The results showed that the Stacking-XGBoost and XGBoost models outperformed other models in terms of prediction accuracy for the CS of UHPC. Based on SHAP values analysis, features such as age, fiber, slag, cement, sand, superplasticizer, water, relative humidity, and temperature were identified as the key parameters affecting UHPC's CS. Furthermore, a quantitative analysis of their combined impact on UHPC's CS was also provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEMONS应助爱笑的稀采纳,获得10
1秒前
开心友儿发布了新的文献求助10
1秒前
行走的鱼发布了新的文献求助10
2秒前
2秒前
木易完成签到,获得积分10
2秒前
豚骨拉面发布了新的文献求助10
2秒前
wulianlian完成签到,获得积分20
2秒前
带虾的烧麦完成签到,获得积分10
3秒前
3秒前
奋斗的绿海完成签到,获得积分20
4秒前
4秒前
希望天下0贩的0应助sxy采纳,获得10
4秒前
5秒前
FashionBoy应助紫心采纳,获得10
5秒前
善学以致用应助zcy采纳,获得10
6秒前
Thea发布了新的文献求助30
6秒前
慕青应助梦若浮生采纳,获得10
7秒前
wwliu5963发布了新的文献求助10
8秒前
呆萌的正豪完成签到,获得积分10
8秒前
活力契完成签到,获得积分10
9秒前
WYF完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
行走的鱼完成签到,获得积分10
11秒前
11秒前
打打应助zjq采纳,获得10
13秒前
14秒前
14秒前
15秒前
15秒前
李颜龙完成签到,获得积分10
16秒前
紫心完成签到,获得积分20
16秒前
16秒前
英姑应助braver采纳,获得10
17秒前
LLY发布了新的文献求助10
17秒前
18秒前
mai发布了新的文献求助10
18秒前
19秒前
紫心发布了新的文献求助10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959564
求助须知:如何正确求助?哪些是违规求助? 3505819
关于积分的说明 11126349
捐赠科研通 3237712
什么是DOI,文献DOI怎么找? 1789318
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802951