An integrated approach of ensemble learning methods for stock index prediction using investor sentiments

计算机科学 可解释性 计量经济学 技术分析 股票市场指数 交易策略 股票市场 索引(排版) 证券交易所 波动性(金融) Boosting(机器学习) 人工智能 机器学习 金融经济学 经济 财务 古生物学 万维网 生物
作者
Shangkun Deng,Yingke Zhu,Yiting Yu,Xiaoru Huang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121710-121710 被引量:5
标识
DOI:10.1016/j.eswa.2023.121710
摘要

It has been evidenced by numerous studies that irrational investor sentiment is one of the critical factors leading to dramatic volatility in financial market prices. Therefore, how to effectively predict market prices by information on investor sentiment is a popular but complex topic for researchers, market investors, and financial regulators. In this research, we aim to investigate the effectiveness of stock index prediction using multiple investor sentiment features, and we propose an advanced price trend prediction and trading simulation approach for the Shanghai Stock Exchange index and the Shenzhen Component index by integrating the Boosting, Bagging, and NSGA-II methods. Additionally, the SHAP method is employed as a model interpretation approach to analyze the importance of the sentiment variables and quantify their contributions to the predictions from both local and global perspectives. According to the experimental results, it can be found that the proposed method outperforms the benchmark methods in terms of the hit ratio, accumulated return, and maximum drawdown. It indicates that the proposed method is capable of achieving high accuracy, low risk, and stable profit in price trend prediction and trading simulation of the Chinese stock indexes. Moreover, the SHAP approach incorporated in the proposed method improved the interpretability of the proposed model, which can provide a beneficial reference for market participants to clarify the important sentiment factors and make relative decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明问筠完成签到 ,获得积分10
刚刚
刚刚
小马甲应助图治采纳,获得10
1秒前
梓榆发布了新的文献求助20
1秒前
宝海青发布了新的文献求助10
2秒前
2秒前
霸气保温杯完成签到,获得积分10
4秒前
4秒前
5秒前
WW发布了新的文献求助10
6秒前
hbzyydx46发布了新的文献求助10
7秒前
orixero应助continue采纳,获得10
8秒前
帆帆发布了新的文献求助10
8秒前
凉皮儿完成签到,获得积分10
9秒前
9秒前
水流众生完成签到 ,获得积分10
10秒前
11秒前
swamp完成签到,获得积分10
11秒前
小刺客发布了新的文献求助10
11秒前
11秒前
huhu发布了新的文献求助10
11秒前
lijia3完成签到,获得积分10
11秒前
共享精神应助轻松迎夏qqa采纳,获得10
13秒前
xiaochuan发布了新的文献求助10
13秒前
zwy109完成签到 ,获得积分10
13秒前
pipizhu完成签到 ,获得积分10
14秒前
jinfeizuo完成签到,获得积分10
16秒前
朱妙彤发布了新的文献求助10
16秒前
思源应助aikeyan采纳,获得10
16秒前
zzcherished完成签到,获得积分10
18秒前
XIAOJU_U完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
上官若男应助SiDi采纳,获得10
19秒前
19秒前
帆帆完成签到,获得积分10
20秒前
21秒前
22秒前
尹雪儿完成签到,获得积分10
22秒前
深情安青应助程锦采纳,获得10
25秒前
iFan完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089