An integrated approach of ensemble learning methods for stock index prediction using investor sentiments

计算机科学 可解释性 计量经济学 技术分析 股票市场指数 交易策略 股票市场 索引(排版) 证券交易所 波动性(金融) Boosting(机器学习) 人工智能 机器学习 金融经济学 经济 财务 古生物学 万维网 生物
作者
Shangkun Deng,Yingke Zhu,Yiting Yu,Xiaoru Huang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121710-121710 被引量:5
标识
DOI:10.1016/j.eswa.2023.121710
摘要

It has been evidenced by numerous studies that irrational investor sentiment is one of the critical factors leading to dramatic volatility in financial market prices. Therefore, how to effectively predict market prices by information on investor sentiment is a popular but complex topic for researchers, market investors, and financial regulators. In this research, we aim to investigate the effectiveness of stock index prediction using multiple investor sentiment features, and we propose an advanced price trend prediction and trading simulation approach for the Shanghai Stock Exchange index and the Shenzhen Component index by integrating the Boosting, Bagging, and NSGA-II methods. Additionally, the SHAP method is employed as a model interpretation approach to analyze the importance of the sentiment variables and quantify their contributions to the predictions from both local and global perspectives. According to the experimental results, it can be found that the proposed method outperforms the benchmark methods in terms of the hit ratio, accumulated return, and maximum drawdown. It indicates that the proposed method is capable of achieving high accuracy, low risk, and stable profit in price trend prediction and trading simulation of the Chinese stock indexes. Moreover, the SHAP approach incorporated in the proposed method improved the interpretability of the proposed model, which can provide a beneficial reference for market participants to clarify the important sentiment factors and make relative decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助whutzxy采纳,获得10
刚刚
小二郎应助huhu采纳,获得10
1秒前
Wav发布了新的文献求助10
1秒前
Lucas应助Nick采纳,获得10
2秒前
研友_VZG7GZ应助mmol采纳,获得10
2秒前
精明书桃完成签到 ,获得积分10
3秒前
serein应助xkh采纳,获得10
4秒前
4秒前
4秒前
冷静灵竹完成签到,获得积分10
5秒前
斯文败类应助司徒无剑采纳,获得10
5秒前
6秒前
6秒前
7秒前
7秒前
少少少完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
从容飞烟完成签到,获得积分10
9秒前
今后应助rrrrrr采纳,获得10
9秒前
金也发布了新的文献求助10
9秒前
10秒前
素和姣姣发布了新的文献求助10
11秒前
可乐加冰发布了新的文献求助10
11秒前
apple完成签到,获得积分10
11秒前
小马过河发布了新的文献求助20
12秒前
12秒前
12秒前
烤麸发布了新的文献求助30
13秒前
大大小小发布了新的文献求助30
13秒前
Li应助司徒无剑采纳,获得10
13秒前
zzy完成签到,获得积分10
13秒前
田様应助Nick采纳,获得10
14秒前
keyalone发布了新的文献求助10
15秒前
tengy完成签到,获得积分10
16秒前
16秒前
unicornmed发布了新的文献求助10
16秒前
无花果应助高工采纳,获得10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825