Preoperative Prediction of Postoperative Infections Using Machine Learning and Electronic Health Record Data

医学 健康档案 梅德林 电子健康档案 机器学习 人工智能 医学物理学 医疗保健 政治学 计算机科学 经济增长 经济 法学
作者
Yaxu Zhuang,Adam R. Dyas,Robert A. Meguid,William G. Henderson,Michael R. Bronsert,Helen J. Madsen,Kathryn Colborn
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:279 (4): 720-726 被引量:4
标识
DOI:10.1097/sla.0000000000006106
摘要

Objective: To estimate preoperative risk of postoperative infections using structured electronic health record (EHR) data. Background: Surveillance and reporting of postoperative infections is primarily done through costly, labor-intensive manual chart reviews on a small sample of patients. Automated methods using statistical models applied to postoperative EHR data have shown promise to augment manual review as they can cover all operations in a timely manner. However, there are no specific models for risk-adjusting infectious complication rates using EHR data. Methods: Preoperative EHR data from 30,639 patients (2013–2019) were linked to the American College of Surgeons National Surgical Quality Improvement Program preoperative data and postoperative infection outcomes data from 5 hospitals in the University of Colorado Health System. EHR data included diagnoses, procedures, operative variables, patient characteristics, and medications. Lasso and the knockoff filter were used to perform controlled variable selection. Outcomes included surgical site infection, urinary tract infection, sepsis/septic shock, and pneumonia up to 30 days postoperatively. Results: Among >15,000 candidate predictors, 7 were chosen for the surgical site infection model and 6 for each of the urinary tract infection, sepsis, and pneumonia models. Important variables included preoperative presence of the specific outcome, wound classification, comorbidities, and American Society of Anesthesiologists physical status classification. The area under the receiver operating characteristic curve for each model ranged from 0.73 to 0.89. Conclusions: Parsimonious preoperative models for predicting postoperative infection risk using EHR data were developed and showed comparable performance to existing American College of Surgeons National Surgical Quality Improvement Program risk models that use manual chart review. These models can be used to estimate risk-adjusted postoperative infection rates applied to large volumes of EHR data in a timely manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shaw发布了新的文献求助10
刚刚
iWatchTheMoon应助王森采纳,获得10
1秒前
年纪阿瑟东完成签到,获得积分10
1秒前
2秒前
科研通AI2S应助树有麋鹿采纳,获得10
2秒前
2秒前
任性的乐巧完成签到,获得积分10
3秒前
4秒前
5秒前
平淡南霜完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
远道发布了新的文献求助10
9秒前
lan199623完成签到,获得积分20
10秒前
cherry完成签到,获得积分10
11秒前
12秒前
cherry发布了新的文献求助10
14秒前
15秒前
自由冰棍完成签到,获得积分10
17秒前
lan199623发布了新的文献求助10
20秒前
20秒前
20秒前
23秒前
23秒前
24秒前
在水一方应助研友_Lk9MdZ采纳,获得30
25秒前
25秒前
Wally完成签到,获得积分10
26秒前
共享精神应助LL采纳,获得10
28秒前
拾柒发布了新的文献求助10
28秒前
29秒前
29秒前
30秒前
Maestro_S应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得30
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
搜集达人应助科研通管家采纳,获得10
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163503
求助须知:如何正确求助?哪些是违规求助? 2814440
关于积分的说明 7904592
捐赠科研通 2473917
什么是DOI,文献DOI怎么找? 1317195
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602188