What influence farmers’ relative poverty in China: A global analysis based on statistical and interpretable machine learning methods

贫穷 繁荣 人口 中国 经济 经济增长 地理 社会学 人口学 考古
作者
Wei Huang,Yinke Liu,Pan Hu,Shiyu Ding,Shufang Gao,Ming Zhang
出处
期刊:Heliyon [Elsevier]
卷期号:9 (9): e19525-e19525 被引量:1
标识
DOI:10.1016/j.heliyon.2023.e19525
摘要

Poverty eradication has always been a major challenge to global development and governance, which received widespread attention from each country. With the completion poverty alleviation task in 2020, relative poverty governance becomes an important issue to be solved in China urgently. Because of a large population, poor infrastructures, insufficient resources, and long-term uneven development raising the living standard of farmers in rural areas is critical to China's success in realizing moderate prosperity. Therefore, identifying the poor farmers, exploring the influence factors to relative poverty, and clarifying its effect mechanism in rural areas are significant for the subsequent poverty governance. Most of the previous studies adopted the method of apriori assuming the factor system and verifying the hypothesis. We innovatively constructed a relative poverty index system consistent with China's actual conditions, selecting all the possible variables that could affect relative poverty based on the existing literature, including individual characteristics, psychological endowment, and geographical environment, and rebuilt an experimental database. Then, through data processing and data analysis, the main factors influencing the relative poverty of farmers were systematically sorted out based on the machine learning method. Finally, 25 chosen influencing factors were discussed in detail. Research findings show that: 1) Machine learning algorithm is proved it could be well applied in relative poverty fields, especially XGBoost, which achieves 81.9% accuracy and the score of ROC_AUC reaches 0.819. 2) This study sheds light on many new research directions in applying machine learning for relative poverty research, besides, the paper offers an integral framework and beneficial reference for target identification using machine learning algorithms. 3) In addition, by utilizing the interpretable tools, the "black-box" of ML become transparent through PDP and SHAP explanation, it also reveals that machine learning models can readily handle the non-linear association relationship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jian完成签到,获得积分10
1秒前
两碗牛又面完成签到,获得积分10
1秒前
跳跃的香岚完成签到,获得积分10
1秒前
夏侯万声完成签到,获得积分10
2秒前
2秒前
mz完成签到,获得积分10
3秒前
囧囧有神发布了新的文献求助10
3秒前
上官若男应助好纠结采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
8秒前
三磷酸腺苷完成签到 ,获得积分10
8秒前
元元脑袋完成签到 ,获得积分10
8秒前
aguo发布了新的文献求助10
8秒前
️语完成签到,获得积分10
9秒前
ttt完成签到,获得积分10
9秒前
9秒前
xx完成签到 ,获得积分10
9秒前
9秒前
梧桐完成签到,获得积分10
9秒前
勇敢虎虎完成签到,获得积分10
10秒前
木又完成签到 ,获得积分10
10秒前
今后应助謓言采纳,获得10
10秒前
AU完成签到,获得积分10
10秒前
张展鹏完成签到 ,获得积分10
11秒前
要减肥人杰完成签到,获得积分20
11秒前
12秒前
舒心平蝶发布了新的文献求助10
12秒前
香蕉觅云应助Cathy采纳,获得10
13秒前
bella完成签到,获得积分10
14秒前
NexusExplorer应助热心小松鼠采纳,获得200
14秒前
我是老大应助djfnf采纳,获得10
15秒前
浮流少年完成签到,获得积分10
15秒前
科研通AI2S应助无聊的三毒采纳,获得10
15秒前
wyn完成签到,获得积分10
15秒前
白凉鞋发布了新的文献求助10
15秒前
未央完成签到,获得积分10
15秒前
宋小花儿完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147058
求助须知:如何正确求助?哪些是违规求助? 2798385
关于积分的说明 7828457
捐赠科研通 2454989
什么是DOI,文献DOI怎么找? 1306573
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565