What influence farmers’ relative poverty in China: A global analysis based on statistical and interpretable machine learning methods

贫穷 繁荣 人口 中国 经济 经济增长 地理 社会学 人口学 考古
作者
Wei Huang,Yinke Liu,Pan Hu,Shiyu Ding,Shufang Gao,Ming Zhang
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (9): e19525-e19525 被引量:1
标识
DOI:10.1016/j.heliyon.2023.e19525
摘要

Poverty eradication has always been a major challenge to global development and governance, which received widespread attention from each country. With the completion poverty alleviation task in 2020, relative poverty governance becomes an important issue to be solved in China urgently. Because of a large population, poor infrastructures, insufficient resources, and long-term uneven development raising the living standard of farmers in rural areas is critical to China's success in realizing moderate prosperity. Therefore, identifying the poor farmers, exploring the influence factors to relative poverty, and clarifying its effect mechanism in rural areas are significant for the subsequent poverty governance. Most of the previous studies adopted the method of apriori assuming the factor system and verifying the hypothesis. We innovatively constructed a relative poverty index system consistent with China's actual conditions, selecting all the possible variables that could affect relative poverty based on the existing literature, including individual characteristics, psychological endowment, and geographical environment, and rebuilt an experimental database. Then, through data processing and data analysis, the main factors influencing the relative poverty of farmers were systematically sorted out based on the machine learning method. Finally, 25 chosen influencing factors were discussed in detail. Research findings show that: 1) Machine learning algorithm is proved it could be well applied in relative poverty fields, especially XGBoost, which achieves 81.9% accuracy and the score of ROC_AUC reaches 0.819. 2) This study sheds light on many new research directions in applying machine learning for relative poverty research, besides, the paper offers an integral framework and beneficial reference for target identification using machine learning algorithms. 3) In addition, by utilizing the interpretable tools, the "black-box" of ML become transparent through PDP and SHAP explanation, it also reveals that machine learning models can readily handle the non-linear association relationship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
聪明夏天完成签到,获得积分10
1秒前
mmb完成签到,获得积分10
1秒前
呆萌的萝完成签到,获得积分10
2秒前
拉长的战斗机完成签到,获得积分10
3秒前
尊敬的凝丹完成签到 ,获得积分10
3秒前
黎明完成签到,获得积分10
3秒前
Hello应助杰杰采纳,获得10
5秒前
春树完成签到,获得积分10
5秒前
5秒前
song完成签到,获得积分10
5秒前
SciGPT应助斯文莺采纳,获得10
5秒前
gjm完成签到,获得积分20
6秒前
tree发布了新的文献求助10
6秒前
6秒前
无限夏云完成签到,获得积分10
6秒前
7秒前
怕孤单的灵竹完成签到,获得积分10
7秒前
liuz53完成签到,获得积分10
7秒前
7秒前
8秒前
琮博完成签到,获得积分10
9秒前
科研通AI5应助凹凸曼采纳,获得30
10秒前
一汪发布了新的文献求助10
11秒前
贰鸟应助听风说采纳,获得20
11秒前
权志龙发布了新的文献求助10
12秒前
符宇新发布了新的文献求助10
12秒前
小郭完成签到,获得积分10
12秒前
深情安青应助哈哈哈采纳,获得30
13秒前
研友_V8RB68完成签到,获得积分10
13秒前
13秒前
蜡笔小新发布了新的文献求助10
14秒前
灵巧一笑发布了新的文献求助10
14秒前
醉熏的涵菱完成签到,获得积分10
15秒前
有为发布了新的文献求助10
15秒前
15秒前
16秒前
Annieqqiu完成签到 ,获得积分10
16秒前
唠叨的以柳完成签到,获得积分20
16秒前
Gu完成签到,获得积分10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650