生物膜
群体猝灭
群体感应
光热治疗
微生物学
铜绿假单胞菌
环丙沙星
化学
抗生素
材料科学
纳米技术
生物
细菌
遗传学
作者
Yue Song,Qianqian Wang,Yuanzhi Pan,Dan Fang,Yuan Tian,Shaobing Zhou
标识
DOI:10.1016/j.actbio.2023.09.021
摘要
Decontamination of biofilm-associated infections presents a significant challenge due to the physical and chemical barrier created by the formation of extracellular matrices. This barrier restricts the access of antibiotics to the bacterial communities within the biofilm and provides protection to the persister cells, potentially leading to antibiotic resistance. In this study, we have developed an integrated quorum quenching biocatalytic nanoplatform for the synergistic chemo-photothermal eradication of P. aeruginosa biofilm infections. Ciprofloxacin (Cip), a model antibiotic, was absorbed onto PDA NPs through π-π stacking. Additionally, acylase (AC) was immobilized on PDA NPs through Schiff base reaction and Michael addition, resulting in the formation of the biocatalytic nanoplatform (PDA-Cip-AC NPs). This biocatalytic nanoplatform was able to enzymatically degrade AHL signaling molecules, thus achieving efficient quorum quenching activity to prevent biofilm formation. Furthermore, the NIR light-triggered on-demand Ciprofloxacin release further enhanced the eradication of P. aeruginosa biofilm infections with a synergy of local hyperthermia. We envision that this integrated quorum quenching nanoplatform provides a reliable tool for combating P. aeruginosa biofilm infections. STATEMENT OF SIGNIFICANCE: An integrated quorum quenching biocatalytic nanoplatform has been developed for the eradication of P. aeruginosa biofilm infections. Quorum-sensing signals play a crucial role in modulating bacterial cell-to-cell communication, biofilm formation, and secretion of virulence factors. This biocatalytic nanoplatform efficiently degrades AHL signaling molecules, thereby blocking cell-to-cell communication and preventing biofilm formation. Additionally, local hyperthermia and on-demand Ciprofloxacin release were achieved through NIR irradiation, working synergistically to eradicate P. aeruginosa biofilm infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI