(Digital Presentation) 2D Molybdenum Disulfide Nanosheets As Cocatalyst and Passivation Layer over CuInS2 Based Photocathode for Solar Hydrogen Evolution

光电阴极 材料科学 钝化 分解水 二硫化钼 析氧 异质结 无机化学 催化作用 化学工程 光化学 化学 光催化 电化学 纳米技术 光电子学 图层(电子) 物理化学 复合材料 物理 电子 工程类 量子力学 生物化学 电极
作者
Mohit Kumar,Challapali Subrahmanyam
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (51): 2751-2751
标识
DOI:10.1149/ma2023-01512751mtgabs
摘要

An excellent strategy to improve photoelectrochemical (PEC) water splitting is to develop cost-effective co-catalysts that do not use noble metals such as Platinum (Pt), Iridium (Ir), Ruthenium (Ru). Transition metal cocatalysts have shown excellent catalytic property towards hydrogen evolution (HER) and oxygen evolution reaction (OER). The surface active sites and lower free energy of H * adsorption (G H adsorption) on the surface are the factors ameliorating and boosting their catalytic activity. Molybdenum Disulfide (MoS 2 ), one the transition metal dichalcogenide with 2D-sheet like structure with high surface area, active sites, and excellent property to catalyze HER comparable to Pt. The property of higher stability towards the photocorrosion as compared to other cocatalysts provides MoS 2 with an additional feature of passivation layer. The sheet-like structure also enhances the light absorption minimizing the effect of parasitic light absorption. Copper based oxides and chalcogenides are well known p-type semiconductors being investigated for photocathode materials to be used in unassisted PEC water splitting cell. CuInS 2 , a ternary copper chalcogenide material with tunable bandgap (E g = 1.5-1.8 eV), high absorption coefficient (> 10 4 ), suitable band positions for hydrogen evolution reaction. Despite all the necessary features and properties, it suffers with the problem of high rate of recombination between photogenerated charge carriers, lower diffusional lengths and poor photostability. Several approaches have been developed to improve the PEC performance of CuInS 2 that include decoration of metal NPs, heterojunction fabrication, deposition of electron (ETLs) and hole transporting layers (HTLs). CdS forms a proper heterojunction with CuInS 2 owing to its conduction (CB) and valence (VB) offsets. The integration of CuInS 2 with CdS could form a facile heterojunction for the effective charge separation and reduce the rate of recombination and decoration of MoS 2 over the CuInS 2 /CdS can be beneficial in terms of improved reaction kinetics at the surface and photostability by avoiding direct contact of CuInS 2 and CdS with electrolyte. A CuInS 2 nanosheet array-based photocathode that is modified with CdS and the co-catalyst MoS 2 . This green approach enhances water splitting under solar irradiation. By introducing CdS and MoS 2 , we significantly improved the visible light absorption of the modified hybrid photocathode (CIS/CdS/MoS 2 ). Photoluminescence, impedance spectroscopy, and Mott–Schottky analysis confirmed that excited electron-hole pairs were better separated, the resistance of charge transfer was minimized, and the excited-state charge carrier concentration increased, leading to increased photocurrent. Typical results demonstrated that CIS/CdS/MoS 2 photocathode delivered higher photocurrent (-1.75 mA/cm 2 at 0 V RHE ) and HC-STH conversion efficiency (0.42% at 0.49 V RHE ) than those of CIS and CIS/CdS photoelectrodes. We attribute this improved PEC performance to the synergetic impact of CdS in charge generation and transfer and MoS 2 as a cocatalyst with active surface sites for proton reduction. The hydrogen evolution experiment showed CIS/CdS/MoS 2 (56.9 μmol/h) showed high activity and rate of hydrogen evolution compared to CIS (22.6 μmol/h). This study not only demonstrates the promising nature of CuInS 2 -based light absorber photocathodes for solar energy utilization but also recommends the use of MoS 2 as a cocatalyst for the proton reduction reactions for widespread applications in solar-to-hydrogen conversion. Reference (1) Kumar, M.; Meena, B.; Subramanyam, P.; Ummethala, G.; Malladi, S. R. K.; Dutta-Gupta, S.; Subrahmanyam, C. CuInS 2 Nanosheet Arrays with a MoS 2 Heterojunction as a Photocathode for PEC Water Splitting. Energy & Fuels 2023 , 37 (3), 2340–2349. https://doi.org/10.1021/acs.energyfuels.2c03502. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MnO2fff应助zsyzxb采纳,获得20
刚刚
kingwill应助zsyzxb采纳,获得20
刚刚
顺利鱼完成签到,获得积分10
1秒前
3秒前
4秒前
Xx.完成签到,获得积分10
5秒前
星辰大海应助内向凌兰采纳,获得10
5秒前
5秒前
wuzhizhiya完成签到,获得积分10
6秒前
7秒前
rudjs发布了新的文献求助10
7秒前
10秒前
Ava应助何糖采纳,获得10
10秒前
桐桐应助美丽的芷烟采纳,获得10
10秒前
野子完成签到,获得积分10
11秒前
情怀应助小D采纳,获得30
12秒前
yuan发布了新的文献求助10
12秒前
berry发布了新的文献求助10
13秒前
13秒前
淡淡采白发布了新的文献求助10
14秒前
思源应助勤恳慕蕊采纳,获得10
14秒前
知犯何逆完成签到 ,获得积分10
15秒前
啊哈完成签到,获得积分10
15秒前
16秒前
16秒前
Draven完成签到 ,获得积分10
16秒前
tmpstlml发布了新的文献求助10
17秒前
张红梨完成签到,获得积分10
17秒前
迷迷完成签到,获得积分20
18秒前
18秒前
科研通AI2S应助chen采纳,获得10
19秒前
穿山甲坐飞机完成签到 ,获得积分10
19秒前
20秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
20秒前
科研通AI5应助经年采纳,获得10
20秒前
20秒前
勤劳晓亦应助木头人采纳,获得10
21秒前
科研通AI5应助想瘦的海豹采纳,获得10
21秒前
22秒前
科研通AI5应助adazbd采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808