Multi-Visual-GRU-Based Survivable Computing Power Scheduling in Metro Optical Networks

计算机科学 差别隐私 数据挖掘 图形 推论 理论计算机科学 聚类分析 信息隐私 树状图 机器学习 人工智能 互联网隐私 人口 人口学 社会学 遗传多样性
作者
Tiankuo Yu,Hui Yang,Qiuyan Yao,Ao Yu,Yang Zhao,Sheng Liu,Yunbo Li,Jie Zhang,Mohamed Cheriet
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 1302-1315 被引量:13
标识
DOI:10.1109/tnsm.2023.3314272
摘要

Due to the rapid development of Internet of Things, a large number of data are collected and published. Nevertheless, the process of data publication entails the risk of data privacy disclosure. Most of the related works can be largely classified into data publication based on anonymity, differential privacy, and graph. However, these existing works either cannot provide theoretically provable privacy protection, or only considered one kind of data attribute and thus cannot guarantee the desirable data utility. To this end, we propose a graph-based data publication scheme via differentially structural inference that can provide theoretically provable differential privacy for individuals, and maintain desirable data utility in many practical applications rather than a certain kind of statistics or data mining results. The main idea is to map the dataset to be published into a data graph, and further use the hierarchical random graph model in statistics to encode the structure of the data graph into dendrograms. Then, we use the Markov Chain Monte Carlo to infer an optimal dendrogram, and moreover design threshold strategy to differentially disturb the optimal dendrogram. Finally, we generate the sanitized data graph based on the disturbed optimal dendrogram, and further map the sanitized data graph to the sanitized dataset to be published. Thereafter, we theoretically prove the performance boundaries of both the privacy preservation and the data utility guarantees provided in our work. Furthermore, the extensive experimental results on two real-world datasets demonstrate that the proposed scheme is superior to the existing work and Baseline, guaranteeing the data utility and preserving the data privacy in many practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟龙威发布了新的文献求助10
1秒前
啊哭发布了新的文献求助10
2秒前
LC发布了新的文献求助10
2秒前
星辰大海应助机智幻嫣采纳,获得20
2秒前
杨wx发布了新的文献求助10
7秒前
7秒前
9秒前
TTOM发布了新的文献求助10
9秒前
9秒前
XuBao发布了新的文献求助10
9秒前
嘻哈hang应助哈哈婷采纳,获得10
10秒前
111发布了新的文献求助10
10秒前
dreamboat发布了新的文献求助10
12秒前
13秒前
DijiaXu应助耀阳采纳,获得10
13秒前
14秒前
丘比特应助luf采纳,获得10
15秒前
15秒前
18秒前
kuiuLinvk完成签到,获得积分10
19秒前
乐正熠彤完成签到,获得积分10
22秒前
22秒前
xfyxxh完成签到,获得积分10
23秒前
Liufgui应助啊哭采纳,获得10
24秒前
24秒前
25秒前
林洁佳完成签到,获得积分10
25秒前
天天快乐应助优雅的抚琴采纳,获得10
25秒前
27秒前
大兵发布了新的文献求助10
27秒前
28秒前
29秒前
林洁佳发布了新的文献求助10
29秒前
小马甲应助尊敬的凌晴采纳,获得10
30秒前
小赵很努力完成签到,获得积分10
30秒前
fate8680发布了新的文献求助10
30秒前
捉一只小鱼完成签到,获得积分10
30秒前
娟姐发布了新的文献求助20
30秒前
CipherSage应助水加冰糖采纳,获得10
31秒前
书祝完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998871
求助须知:如何正确求助?哪些是违规求助? 3538355
关于积分的说明 11273977
捐赠科研通 3277299
什么是DOI,文献DOI怎么找? 1807509
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810075