已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Visual-GRU-Based Survivable Computing Power Scheduling in Metro Optical Networks

计算机科学 差别隐私 数据挖掘 图形 推论 理论计算机科学 聚类分析 信息隐私 树状图 机器学习 人工智能 互联网隐私 人口 人口学 社会学 遗传多样性
作者
Tiankuo Yu,Hui Yang,Qiuyan Yao,Ao Yu,Yang Zhao,Sheng Liu,Yunbo Li,Jie Zhang,Mohamed Cheriet
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 1302-1315 被引量:13
标识
DOI:10.1109/tnsm.2023.3314272
摘要

Due to the rapid development of Internet of Things, a large number of data are collected and published. Nevertheless, the process of data publication entails the risk of data privacy disclosure. Most of the related works can be largely classified into data publication based on anonymity, differential privacy, and graph. However, these existing works either cannot provide theoretically provable privacy protection, or only considered one kind of data attribute and thus cannot guarantee the desirable data utility. To this end, we propose a graph-based data publication scheme via differentially structural inference that can provide theoretically provable differential privacy for individuals, and maintain desirable data utility in many practical applications rather than a certain kind of statistics or data mining results. The main idea is to map the dataset to be published into a data graph, and further use the hierarchical random graph model in statistics to encode the structure of the data graph into dendrograms. Then, we use the Markov Chain Monte Carlo to infer an optimal dendrogram, and moreover design threshold strategy to differentially disturb the optimal dendrogram. Finally, we generate the sanitized data graph based on the disturbed optimal dendrogram, and further map the sanitized data graph to the sanitized dataset to be published. Thereafter, we theoretically prove the performance boundaries of both the privacy preservation and the data utility guarantees provided in our work. Furthermore, the extensive experimental results on two real-world datasets demonstrate that the proposed scheme is superior to the existing work and Baseline, guaranteeing the data utility and preserving the data privacy in many practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aki应助xaoi采纳,获得10
1秒前
蘑菇完成签到 ,获得积分10
2秒前
Jasper应助zzyfsh采纳,获得10
4秒前
4秒前
5秒前
shuiyu完成签到,获得积分10
8秒前
归去来兮发布了新的文献求助10
10秒前
10秒前
李健应助木习习采纳,获得10
10秒前
12秒前
受伤芝麻完成签到,获得积分10
12秒前
无字诉题完成签到 ,获得积分10
13秒前
13秒前
shane完成签到,获得积分10
14秒前
受伤芝麻发布了新的文献求助10
15秒前
16秒前
17秒前
哆啦A梦完成签到 ,获得积分10
17秒前
聪明的孩子完成签到 ,获得积分10
17秒前
搜集达人应助ffddsdc采纳,获得10
17秒前
Ava应助6666采纳,获得10
18秒前
xiaoya927217发布了新的文献求助10
18秒前
18秒前
shane发布了新的文献求助10
19秒前
木习习发布了新的文献求助10
19秒前
Nikki发布了新的文献求助10
23秒前
agf完成签到 ,获得积分10
24秒前
zzyfsh发布了新的文献求助10
26秒前
27秒前
aki应助浮浮世世采纳,获得10
28秒前
科研通AI6应助喜悦的如娆采纳,获得10
29秒前
ffddsdc发布了新的文献求助10
32秒前
RSU完成签到,获得积分10
36秒前
xxx完成签到 ,获得积分10
38秒前
Chemistry完成签到 ,获得积分10
40秒前
Hello应助直率的醉冬采纳,获得10
40秒前
科研通AI6应助kkkkyt采纳,获得10
42秒前
烟花应助Intjer采纳,获得10
50秒前
Kristine完成签到 ,获得积分10
53秒前
CipherSage应助元儿圆采纳,获得10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511