清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-Visual-GRU-Based Survivable Computing Power Scheduling in Metro Optical Networks

计算机科学 差别隐私 数据挖掘 图形 推论 理论计算机科学 聚类分析 信息隐私 树状图 机器学习 人工智能 互联网隐私 人口 人口学 社会学 遗传多样性
作者
Tiankuo Yu,Hui Yang,Qiuyan Yao,Ao Yu,Yang Zhao,Sheng Liu,Yunbo Li,Jie Zhang,Mohamed Cheriet
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 1302-1315 被引量:13
标识
DOI:10.1109/tnsm.2023.3314272
摘要

Due to the rapid development of Internet of Things, a large number of data are collected and published. Nevertheless, the process of data publication entails the risk of data privacy disclosure. Most of the related works can be largely classified into data publication based on anonymity, differential privacy, and graph. However, these existing works either cannot provide theoretically provable privacy protection, or only considered one kind of data attribute and thus cannot guarantee the desirable data utility. To this end, we propose a graph-based data publication scheme via differentially structural inference that can provide theoretically provable differential privacy for individuals, and maintain desirable data utility in many practical applications rather than a certain kind of statistics or data mining results. The main idea is to map the dataset to be published into a data graph, and further use the hierarchical random graph model in statistics to encode the structure of the data graph into dendrograms. Then, we use the Markov Chain Monte Carlo to infer an optimal dendrogram, and moreover design threshold strategy to differentially disturb the optimal dendrogram. Finally, we generate the sanitized data graph based on the disturbed optimal dendrogram, and further map the sanitized data graph to the sanitized dataset to be published. Thereafter, we theoretically prove the performance boundaries of both the privacy preservation and the data utility guarantees provided in our work. Furthermore, the extensive experimental results on two real-world datasets demonstrate that the proposed scheme is superior to the existing work and Baseline, guaranteeing the data utility and preserving the data privacy in many practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆的靖仇完成签到,获得积分10
8秒前
佳言2009完成签到 ,获得积分10
9秒前
深情的黎云完成签到 ,获得积分10
20秒前
Hello应助Fairy采纳,获得10
25秒前
yu完成签到 ,获得积分10
29秒前
P_Chem完成签到,获得积分10
41秒前
FashionBoy应助科研通管家采纳,获得10
48秒前
Kai完成签到 ,获得积分10
49秒前
zhangchen123完成签到,获得积分10
50秒前
何硕完成签到 ,获得积分10
52秒前
naczx完成签到,获得积分0
55秒前
酷酷的紫南完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
超级苹果完成签到 ,获得积分10
1分钟前
mictime发布了新的文献求助20
1分钟前
潇洒的凝梦完成签到,获得积分10
1分钟前
好好好完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
活力竺发布了新的文献求助20
2分钟前
2分钟前
Raunio完成签到,获得积分10
2分钟前
StonesKing完成签到,获得积分20
3分钟前
大个应助miooo采纳,获得10
3分钟前
吴静完成签到 ,获得积分10
3分钟前
小小鱼完成签到 ,获得积分10
3分钟前
lily完成签到 ,获得积分10
3分钟前
隐形荟完成签到 ,获得积分10
3分钟前
小太阳完成签到 ,获得积分10
4分钟前
BINBIN完成签到 ,获得积分10
4分钟前
幽默滑板完成签到 ,获得积分10
4分钟前
爱吃橙子的苹果水完成签到 ,获得积分10
4分钟前
qqJing完成签到,获得积分10
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
mictime完成签到,获得积分10
4分钟前
4分钟前
zw完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5187695
求助须知:如何正确求助?哪些是违规求助? 4372315
关于积分的说明 13613206
捐赠科研通 4225430
什么是DOI,文献DOI怎么找? 2317616
邀请新用户注册赠送积分活动 1316265
关于科研通互助平台的介绍 1265830