Closed-Loop Transfer Enables AI to Yield Chemical Knowledge

接口 化学空间 模块化设计 人工智能 计算机科学 产量(工程) 集合(抽象数据类型) 机器学习 生化工程 物理 工程类 生物 药物发现 生物信息学 热力学 计算机硬件 程序设计语言 操作系统
作者
Nicholas H. Angello,David M. Friday,Changhyun Hwang,Seungjoo Yi,Austin Cheng,Tiara Torres-Flores,Edward R. Jira,Wesley Wang,Alán Aspuru‐Guzik,Martin D. Burke,Charles M. Schroeder,Ying Diao,Nicholas E. Jackson
标识
DOI:10.26434/chemrxiv-2023-jqbqt
摘要

AI-guided closed-loop experimentation has recently emerged as a promising method to optimize objective functions,1,2 but the substantial potential of this traditionally black-box approach to reveal new scientific knowledge has remained largely untapped. Here, we report a new AI-guided approach, dubbed Closed-Loop Transfer (CLT), that integrates closed-loop experiments with physics-based feature selection and supervised learning to yield new scientific knowledge in parallel with optimization of objective functions. CLT surprisingly revealed that high-energy regions of the triplet state manifold are paramount in dictating molecular photostability in solution across a diverse chemical library of light-harvesting donor-bridge-acceptor oligomers. Remarkably, this insight emerged after automated modular synthesis and experimental characterization of only ~1.5% of the theoretical chemical space. Supervised learning models considering millions of combinations of 100+ physics-based descriptors further showed that high energy triplet states most strongly correlate with photostability, while excluding more commonly considered predictors such as the lowest energy triplet state. The physics-informed model for photostability was even further confirmed and then strengthened using an explicit experimental test set, validating the substantial power of the CLT method. Broadly, these findings show that interfacing physics-based modeling with closed-loop discovery campaigns unimpeded by synthesis bottlenecks can rapidly illuminate fundamental chemical insights and guide more rational pursuit of frontier molecular functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
du完成签到 ,获得积分0
刚刚
传奇3应助清颜采纳,获得10
刚刚
zzyyzz完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
dongdong完成签到,获得积分10
2秒前
脑洞疼应助hqq采纳,获得30
4秒前
5秒前
博修发布了新的文献求助10
6秒前
hexy629完成签到,获得积分10
6秒前
7秒前
kk完成签到,获得积分10
8秒前
慕青应助帅气的蚊子采纳,获得30
10秒前
萝卜特二完成签到,获得积分10
10秒前
kedaya应助果实采纳,获得30
12秒前
12秒前
酷波er应助HM采纳,获得10
13秒前
14秒前
14秒前
全焱完成签到,获得积分10
15秒前
16秒前
manggggo应助阳光念桃采纳,获得10
17秒前
帅气的蚊子完成签到,获得积分20
19秒前
MeSs完成签到 ,获得积分10
19秒前
全焱发布了新的文献求助10
19秒前
刘善宁完成签到,获得积分10
21秒前
21秒前
荔刻UTD关注了科研通微信公众号
23秒前
26秒前
研途完成签到,获得积分10
27秒前
zpj完成签到 ,获得积分10
29秒前
32秒前
梧桐发布了新的文献求助10
34秒前
34秒前
34秒前
kiki发布了新的文献求助10
36秒前
manggggo应助博修采纳,获得10
38秒前
霍冰旋完成签到,获得积分10
39秒前
天天快乐应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150