Closed-Loop Transfer Enables AI to Yield Chemical Knowledge

接口 化学空间 模块化设计 人工智能 计算机科学 产量(工程) 集合(抽象数据类型) 机器学习 生化工程 物理 工程类 生物 药物发现 生物信息学 热力学 操作系统 程序设计语言 计算机硬件
作者
Nicholas H. Angello,David M. Friday,Changhyun Hwang,Seungjoo Yi,Austin Cheng,Tiara Torres-Flores,Edward R. Jira,Wesley Wang,Alán Aspuru‐Guzik,Martin D. Burke,Charles M. Schroeder,Ying Diao,Nicholas E. Jackson
标识
DOI:10.26434/chemrxiv-2023-jqbqt
摘要

AI-guided closed-loop experimentation has recently emerged as a promising method to optimize objective functions,1,2 but the substantial potential of this traditionally black-box approach to reveal new scientific knowledge has remained largely untapped. Here, we report a new AI-guided approach, dubbed Closed-Loop Transfer (CLT), that integrates closed-loop experiments with physics-based feature selection and supervised learning to yield new scientific knowledge in parallel with optimization of objective functions. CLT surprisingly revealed that high-energy regions of the triplet state manifold are paramount in dictating molecular photostability in solution across a diverse chemical library of light-harvesting donor-bridge-acceptor oligomers. Remarkably, this insight emerged after automated modular synthesis and experimental characterization of only ~1.5% of the theoretical chemical space. Supervised learning models considering millions of combinations of 100+ physics-based descriptors further showed that high energy triplet states most strongly correlate with photostability, while excluding more commonly considered predictors such as the lowest energy triplet state. The physics-informed model for photostability was even further confirmed and then strengthened using an explicit experimental test set, validating the substantial power of the CLT method. Broadly, these findings show that interfacing physics-based modeling with closed-loop discovery campaigns unimpeded by synthesis bottlenecks can rapidly illuminate fundamental chemical insights and guide more rational pursuit of frontier molecular functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蚂蚁Y嘿发布了新的文献求助10
刚刚
鳗鱼语风完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI2S应助朱子采纳,获得10
4秒前
陈爱佳发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
一颗西柚完成签到,获得积分10
7秒前
adearfish完成签到 ,获得积分10
7秒前
pain豆先生完成签到 ,获得积分10
8秒前
David发布了新的文献求助10
9秒前
今后应助卜卜脆采纳,获得10
11秒前
David发布了新的文献求助10
11秒前
快来拾糖发布了新的文献求助200
12秒前
大海完成签到,获得积分10
13秒前
13秒前
wyx关闭了wyx文献求助
14秒前
阿杰发布了新的文献求助10
14秒前
顺心的乌冬面完成签到,获得积分20
15秒前
Liaochuan完成签到,获得积分10
16秒前
哈哈哈哈哈哈哈哈哈完成签到,获得积分10
17秒前
彪壮的银耳汤完成签到 ,获得积分10
18秒前
zxxx发布了新的文献求助10
18秒前
懒羊羊大王完成签到,获得积分10
19秒前
19秒前
大胖完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
汉堡包应助尛瞐慶成采纳,获得10
21秒前
22秒前
22秒前
慕青应助m1采纳,获得10
22秒前
亚当发布了新的文献求助10
24秒前
还能不能学会了完成签到,获得积分10
25秒前
b162发布了新的文献求助30
25秒前
26秒前
千万雷同发布了新的文献求助10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313770
求助须知:如何正确求助?哪些是违规求助? 2946123
关于积分的说明 8528435
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434019
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650679