重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Closed-Loop Transfer Enables AI to Yield Chemical Knowledge

接口 化学空间 模块化设计 人工智能 计算机科学 产量(工程) 集合(抽象数据类型) 机器学习 生化工程 物理 工程类 生物 药物发现 生物信息学 热力学 计算机硬件 程序设计语言 操作系统
作者
Nicholas H. Angello,David M. Friday,Changhyun Hwang,Seungjoo Yi,Austin Cheng,Tiara Torres-Flores,Edward R. Jira,Wesley Wang,Alán Aspuru‐Guzik,Martin D. Burke,Charles M. Schroeder,Ying Diao,Nicholas E. Jackson
标识
DOI:10.26434/chemrxiv-2023-jqbqt
摘要

AI-guided closed-loop experimentation has recently emerged as a promising method to optimize objective functions,1,2 but the substantial potential of this traditionally black-box approach to reveal new scientific knowledge has remained largely untapped. Here, we report a new AI-guided approach, dubbed Closed-Loop Transfer (CLT), that integrates closed-loop experiments with physics-based feature selection and supervised learning to yield new scientific knowledge in parallel with optimization of objective functions. CLT surprisingly revealed that high-energy regions of the triplet state manifold are paramount in dictating molecular photostability in solution across a diverse chemical library of light-harvesting donor-bridge-acceptor oligomers. Remarkably, this insight emerged after automated modular synthesis and experimental characterization of only ~1.5% of the theoretical chemical space. Supervised learning models considering millions of combinations of 100+ physics-based descriptors further showed that high energy triplet states most strongly correlate with photostability, while excluding more commonly considered predictors such as the lowest energy triplet state. The physics-informed model for photostability was even further confirmed and then strengthened using an explicit experimental test set, validating the substantial power of the CLT method. Broadly, these findings show that interfacing physics-based modeling with closed-loop discovery campaigns unimpeded by synthesis bottlenecks can rapidly illuminate fundamental chemical insights and guide more rational pursuit of frontier molecular functions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧阳铭发布了新的文献求助10
刚刚
2秒前
2秒前
3秒前
3秒前
笨笨西牛发布了新的文献求助10
3秒前
浮游应助幼儿园扛把子采纳,获得10
3秒前
yyyy发布了新的文献求助10
4秒前
Qiancheng发布了新的文献求助10
4秒前
li完成签到,获得积分10
4秒前
Akim应助大胆菲音采纳,获得10
4秒前
科研通AI6应助111采纳,获得10
4秒前
董帅发布了新的文献求助10
6秒前
impericalWcourt完成签到,获得积分10
6秒前
6秒前
pippitail发布了新的文献求助10
7秒前
wzg666发布了新的文献求助10
7秒前
7秒前
8秒前
寻珍发布了新的文献求助30
9秒前
9秒前
刘艺娜完成签到,获得积分10
10秒前
科目三应助impericalWcourt采纳,获得10
11秒前
淡定可乐完成签到,获得积分10
11秒前
Orange应助123采纳,获得10
11秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
詹妮完成签到,获得积分10
13秒前
Ray发布了新的文献求助10
14秒前
辛勤的无血完成签到,获得积分10
14秒前
14秒前
大模型应助tang采纳,获得10
15秒前
123发布了新的文献求助10
16秒前
整齐棉花糖完成签到,获得积分10
16秒前
16秒前
赘婿应助贾雯倩采纳,获得10
17秒前
547351发布了新的文献求助10
17秒前
泡泡发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468225
求助须知:如何正确求助?哪些是违规求助? 4571705
关于积分的说明 14331270
捐赠科研通 4498225
什么是DOI,文献DOI怎么找? 2464411
邀请新用户注册赠送积分活动 1453131
关于科研通互助平台的介绍 1427777