A Novel Digital Twin (DT) Model Based on WiFi CSI, Signal Processing and Machine Learning for Patient Respiration Monitoring and Decision-Support

人工智能 计算机科学 降维 平滑的 主成分分析 机器学习 远程病人监护 滤波器(信号处理) 支持向量机 切比雪夫滤波器 模式识别(心理学) 医学 计算机视觉 放射科
作者
Sagheer Khan,Aaesha Alzaabi,Zafar Iqbal,Tharmalingam Ratnarajah,Tughrul Arslan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 103554-103568 被引量:4
标识
DOI:10.1109/access.2023.3316508
摘要

Digital Twin (DT) in Healthcare 4.0 (H4.0) presents a digital model of the patient with all its biological properties and characteristics. One of the application areas is patient respiration monitoring for enhanced patient care and decision support to healthcare professionals. Obtrusive methods of patient monitoring create hindrances in the patient's daily routine. This research presents a novel DT model (ResDT) based on Wi-Fi Carrier State Information (CSI), improved signal processing, and Machine Learning (ML) algorithms for monitoring and classification (binary and multi-class) of patient respiration. A Wi-Fi sensor ESP32 with Wi-Fi CSI was utilized for the collection of respiration data. This provides an added advantage of unobtrusive monitoring of patient vital signs. The Patient's Breaths Per Minute (BPM) is estimated from raw sensor data through the integration of multiple signal processing methodologies for denoising (smoothing and filtering) and dimensionality reduction (PCA, SVM, EMD, EMD-PCA). Multiple filters and dimensionality reduction methodologies are compared for accurate BPM estimation. The elliptical filter provides a relatively better estimation of the BPM with 87.5% accurate estimation as compared to other bandpass filters such as Butterworth (BF), Chebyshev type 1 Filter (CH1), Chebyshev type 2 Filter (CH2), and wavelet Decomposition (62.5%, 75%, 68.75%, and 75% respectively). Principal Component Analysis (PCA) was performed to provide better dimensionality reduction with 87.5% accurate BPM values compared to EMD, SVD, and EMD-PCA (57%, 44%, and 44% respectively). Additionally, the fine tree algorithm, from the implemented 21 ML supervised classification algorithms with K-fold crossvalidation, was observed to be the optimal choice for multi-class and binary-class classification problems in the presented ResDT model with 96.9% and 95.8% accuracy respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
领导范儿应助欢呼的天与采纳,获得10
1秒前
科研gou完成签到 ,获得积分10
1秒前
white完成签到 ,获得积分10
1秒前
刺猬完成签到,获得积分10
1秒前
JY完成签到,获得积分10
2秒前
Lucas应助Xxxxxxx采纳,获得10
2秒前
3秒前
surprise完成签到,获得积分10
5秒前
5秒前
桐桐应助Jeanie采纳,获得10
5秒前
6秒前
stg完成签到,获得积分10
6秒前
7秒前
7秒前
小瓜瓜完成签到,获得积分20
7秒前
mm完成签到,获得积分10
7秒前
李山鬼完成签到,获得积分10
8秒前
8秒前
8秒前
魔幻的访云完成签到,获得积分10
9秒前
爱吃冰糖葫芦完成签到,获得积分10
9秒前
飒saus发布了新的文献求助10
9秒前
10秒前
隐形曼青应助肖敏采纳,获得10
10秒前
文文完成签到 ,获得积分10
11秒前
linnn发布了新的文献求助10
11秒前
12秒前
Xxxxxxx发布了新的文献求助10
13秒前
Linus发布了新的文献求助10
13秒前
JamesPei应助夏天的西瓜采纳,获得10
13秒前
1111111应助爱笑的冷风采纳,获得10
14秒前
不吃晚饭发布了新的文献求助10
14秒前
Alex发布了新的文献求助10
14秒前
呼伦河小马完成签到,获得积分10
15秒前
chiq发布了新的文献求助10
15秒前
科研通AI6应助乐观金毛采纳,获得10
15秒前
聪明的小李发布了新的文献求助200
15秒前
Ava应助xiaowang采纳,获得10
16秒前
酷波er应助嘿嘿嘿采纳,获得10
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583328
求助须知:如何正确求助?哪些是违规求助? 4667180
关于积分的说明 14765874
捐赠科研通 4609364
什么是DOI,文献DOI怎么找? 2529161
邀请新用户注册赠送积分活动 1498408
关于科研通互助平台的介绍 1467043