A Novel Digital Twin (DT) Model Based on WiFi CSI, Signal Processing and Machine Learning for Patient Respiration Monitoring and Decision-Support

人工智能 计算机科学 降维 平滑的 主成分分析 机器学习 远程病人监护 滤波器(信号处理) 支持向量机 切比雪夫滤波器 模式识别(心理学) 医学 计算机视觉 放射科
作者
Sagheer Khan,Aaesha Alzaabi,Zafar Iqbal,Tharmalingam Ratnarajah,Tughrul Arslan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 103554-103568 被引量:4
标识
DOI:10.1109/access.2023.3316508
摘要

Digital Twin (DT) in Healthcare 4.0 (H4.0) presents a digital model of the patient with all its biological properties and characteristics. One of the application areas is patient respiration monitoring for enhanced patient care and decision support to healthcare professionals. Obtrusive methods of patient monitoring create hindrances in the patient's daily routine. This research presents a novel DT model (ResDT) based on Wi-Fi Carrier State Information (CSI), improved signal processing, and Machine Learning (ML) algorithms for monitoring and classification (binary and multi-class) of patient respiration. A Wi-Fi sensor ESP32 with Wi-Fi CSI was utilized for the collection of respiration data. This provides an added advantage of unobtrusive monitoring of patient vital signs. The Patient's Breaths Per Minute (BPM) is estimated from raw sensor data through the integration of multiple signal processing methodologies for denoising (smoothing and filtering) and dimensionality reduction (PCA, SVM, EMD, EMD-PCA). Multiple filters and dimensionality reduction methodologies are compared for accurate BPM estimation. The elliptical filter provides a relatively better estimation of the BPM with 87.5% accurate estimation as compared to other bandpass filters such as Butterworth (BF), Chebyshev type 1 Filter (CH1), Chebyshev type 2 Filter (CH2), and wavelet Decomposition (62.5%, 75%, 68.75%, and 75% respectively). Principal Component Analysis (PCA) was performed to provide better dimensionality reduction with 87.5% accurate BPM values compared to EMD, SVD, and EMD-PCA (57%, 44%, and 44% respectively). Additionally, the fine tree algorithm, from the implemented 21 ML supervised classification algorithms with K-fold crossvalidation, was observed to be the optimal choice for multi-class and binary-class classification problems in the presented ResDT model with 96.9% and 95.8% accuracy respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静发布了新的文献求助10
刚刚
科研通AI6应助wyt采纳,获得10
1秒前
chili完成签到,获得积分10
1秒前
2秒前
3秒前
乐生完成签到,获得积分10
6秒前
飞行器完成签到,获得积分10
7秒前
上善若水发布了新的文献求助10
7秒前
Carolna完成签到,获得积分10
8秒前
酷酷的匪发布了新的文献求助10
9秒前
10秒前
科目三应助阿莫仙采纳,获得10
11秒前
科研通AI6应助乾渊采纳,获得10
11秒前
冷酷愚志完成签到,获得积分10
11秒前
小蘑菇应助坦率德地采纳,获得20
12秒前
12秒前
13秒前
13秒前
李健应助不安的冷荷采纳,获得10
14秒前
田様应助吕佳蔚采纳,获得10
15秒前
16秒前
wxf发布了新的文献求助10
17秒前
19秒前
碎碎念发布了新的文献求助10
19秒前
19秒前
ding应助酷酷的匪采纳,获得10
21秒前
21秒前
22秒前
CC完成签到 ,获得积分10
23秒前
阿莫仙发布了新的文献求助10
23秒前
23秒前
充电宝应助刚睡醒采纳,获得10
25秒前
25秒前
老北京发布了新的文献求助10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
26秒前
今后应助科研通管家采纳,获得10
26秒前
Cleo应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
充电宝应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841