亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Digital Twin (DT) Model Based on WiFi CSI, Signal Processing and Machine Learning for Patient Respiration Monitoring and Decision-Support

人工智能 计算机科学 降维 平滑的 主成分分析 机器学习 远程病人监护 滤波器(信号处理) 支持向量机 切比雪夫滤波器 模式识别(心理学) 医学 计算机视觉 放射科
作者
Sagheer Khan,Aaesha Alzaabi,Zafar Iqbal,Tharmalingam Ratnarajah,Tughrul Arslan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 103554-103568 被引量:4
标识
DOI:10.1109/access.2023.3316508
摘要

Digital Twin (DT) in Healthcare 4.0 (H4.0) presents a digital model of the patient with all its biological properties and characteristics. One of the application areas is patient respiration monitoring for enhanced patient care and decision support to healthcare professionals. Obtrusive methods of patient monitoring create hindrances in the patient's daily routine. This research presents a novel DT model (ResDT) based on Wi-Fi Carrier State Information (CSI), improved signal processing, and Machine Learning (ML) algorithms for monitoring and classification (binary and multi-class) of patient respiration. A Wi-Fi sensor ESP32 with Wi-Fi CSI was utilized for the collection of respiration data. This provides an added advantage of unobtrusive monitoring of patient vital signs. The Patient's Breaths Per Minute (BPM) is estimated from raw sensor data through the integration of multiple signal processing methodologies for denoising (smoothing and filtering) and dimensionality reduction (PCA, SVM, EMD, EMD-PCA). Multiple filters and dimensionality reduction methodologies are compared for accurate BPM estimation. The elliptical filter provides a relatively better estimation of the BPM with 87.5% accurate estimation as compared to other bandpass filters such as Butterworth (BF), Chebyshev type 1 Filter (CH1), Chebyshev type 2 Filter (CH2), and wavelet Decomposition (62.5%, 75%, 68.75%, and 75% respectively). Principal Component Analysis (PCA) was performed to provide better dimensionality reduction with 87.5% accurate BPM values compared to EMD, SVD, and EMD-PCA (57%, 44%, and 44% respectively). Additionally, the fine tree algorithm, from the implemented 21 ML supervised classification algorithms with K-fold crossvalidation, was observed to be the optimal choice for multi-class and binary-class classification problems in the presented ResDT model with 96.9% and 95.8% accuracy respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Am1r采纳,获得10
1秒前
深情安青应助waomi采纳,获得10
4秒前
OnlyHarbour完成签到,获得积分10
6秒前
搞怪人雄完成签到,获得积分10
10秒前
尼古拉斯铁柱完成签到 ,获得积分10
14秒前
1947188918完成签到,获得积分10
15秒前
科研通AI6应助VDC采纳,获得10
17秒前
smh完成签到,获得积分10
19秒前
我是老大应助科研通管家采纳,获得10
21秒前
21秒前
啰友痕武次子完成签到,获得积分10
22秒前
fhg完成签到 ,获得积分10
23秒前
24秒前
25秒前
无私的含海完成签到,获得积分10
26秒前
科研通AI6应助light采纳,获得10
27秒前
29秒前
绿水晶完成签到 ,获得积分10
31秒前
薛建伟完成签到 ,获得积分10
32秒前
36秒前
doctor2023发布了新的文献求助10
36秒前
zbx发布了新的文献求助10
38秒前
Qiao发布了新的文献求助30
41秒前
41秒前
Akim应助shimly0101xx采纳,获得10
44秒前
scc发布了新的文献求助30
45秒前
yyds举报狮子卷卷求助涉嫌违规
46秒前
安静的从梦完成签到 ,获得积分10
51秒前
shimly0101xx完成签到,获得积分10
57秒前
57秒前
yyds举报王博求助涉嫌违规
58秒前
shimly0101xx发布了新的文献求助10
1分钟前
星辰大海应助xxxllllll采纳,获得10
1分钟前
1分钟前
冷静新烟发布了新的文献求助10
1分钟前
sharkboy完成签到,获得积分10
1分钟前
Wxy发布了新的文献求助10
1分钟前
1分钟前
苒洳完成签到 ,获得积分10
1分钟前
番茄黄瓜芝士片完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049