亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Digital Twin (DT) Model Based on WiFi CSI, Signal Processing and Machine Learning for Patient Respiration Monitoring and Decision-Support

人工智能 计算机科学 降维 平滑的 主成分分析 机器学习 远程病人监护 滤波器(信号处理) 支持向量机 切比雪夫滤波器 模式识别(心理学) 医学 计算机视觉 放射科
作者
Sagheer Khan,Aaesha Alzaabi,Zafar Iqbal,Tharmalingam Ratnarajah,Tughrul Arslan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 103554-103568 被引量:4
标识
DOI:10.1109/access.2023.3316508
摘要

Digital Twin (DT) in Healthcare 4.0 (H4.0) presents a digital model of the patient with all its biological properties and characteristics. One of the application areas is patient respiration monitoring for enhanced patient care and decision support to healthcare professionals. Obtrusive methods of patient monitoring create hindrances in the patient's daily routine. This research presents a novel DT model (ResDT) based on Wi-Fi Carrier State Information (CSI), improved signal processing, and Machine Learning (ML) algorithms for monitoring and classification (binary and multi-class) of patient respiration. A Wi-Fi sensor ESP32 with Wi-Fi CSI was utilized for the collection of respiration data. This provides an added advantage of unobtrusive monitoring of patient vital signs. The Patient's Breaths Per Minute (BPM) is estimated from raw sensor data through the integration of multiple signal processing methodologies for denoising (smoothing and filtering) and dimensionality reduction (PCA, SVM, EMD, EMD-PCA). Multiple filters and dimensionality reduction methodologies are compared for accurate BPM estimation. The elliptical filter provides a relatively better estimation of the BPM with 87.5% accurate estimation as compared to other bandpass filters such as Butterworth (BF), Chebyshev type 1 Filter (CH1), Chebyshev type 2 Filter (CH2), and wavelet Decomposition (62.5%, 75%, 68.75%, and 75% respectively). Principal Component Analysis (PCA) was performed to provide better dimensionality reduction with 87.5% accurate BPM values compared to EMD, SVD, and EMD-PCA (57%, 44%, and 44% respectively). Additionally, the fine tree algorithm, from the implemented 21 ML supervised classification algorithms with K-fold crossvalidation, was observed to be the optimal choice for multi-class and binary-class classification problems in the presented ResDT model with 96.9% and 95.8% accuracy respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助健忘的板凳采纳,获得10
3秒前
Zhr完成签到 ,获得积分10
6秒前
8秒前
9秒前
11秒前
wondor1111发布了新的文献求助10
14秒前
15秒前
16秒前
科研通AI6应助凶狠的秀发采纳,获得10
16秒前
yuanyuan发布了新的文献求助10
21秒前
大个应助yuanyuan采纳,获得10
36秒前
old幽露露完成签到 ,获得积分10
42秒前
123完成签到 ,获得积分10
42秒前
LIFE2020完成签到 ,获得积分10
46秒前
level完成签到 ,获得积分10
51秒前
52秒前
科研通AI6应助殷楷霖采纳,获得10
55秒前
NexusExplorer应助科研通管家采纳,获得10
57秒前
打打应助科研通管家采纳,获得10
57秒前
ceeray23应助科研通管家采纳,获得10
57秒前
科目三应助科研通管家采纳,获得10
57秒前
大模型应助科研通管家采纳,获得20
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
smg1307完成签到 ,获得积分10
1分钟前
ggg完成签到 ,获得积分10
1分钟前
可爱的函函应助年轻豌豆采纳,获得10
1分钟前
1分钟前
1分钟前
落后的慕梅完成签到 ,获得积分10
1分钟前
Qiiiiii完成签到,获得积分10
1分钟前
yuanyuan发布了新的文献求助10
1分钟前
jiangchang发布了新的文献求助10
1分钟前
jueshadi完成签到 ,获得积分10
1分钟前
sarah完成签到,获得积分10
1分钟前
hlq完成签到 ,获得积分10
1分钟前
1分钟前
jiangchang完成签到,获得积分10
1分钟前
乐乐应助yuanyuan采纳,获得10
1分钟前
仰勒完成签到 ,获得积分10
1分钟前
ZB完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599674
求助须知:如何正确求助?哪些是违规求助? 4685382
关于积分的说明 14838420
捐赠科研通 4669851
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505513
关于科研通互助平台的介绍 1470898