A Novel Digital Twin (DT) Model Based on WiFi CSI, Signal Processing and Machine Learning for Patient Respiration Monitoring and Decision-Support

人工智能 计算机科学 降维 平滑的 主成分分析 机器学习 远程病人监护 滤波器(信号处理) 支持向量机 切比雪夫滤波器 模式识别(心理学) 医学 计算机视觉 放射科
作者
Sagheer Khan,Aaesha Alzaabi,Zafar Iqbal,Tharmalingam Ratnarajah,Tughrul Arslan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 103554-103568 被引量:4
标识
DOI:10.1109/access.2023.3316508
摘要

Digital Twin (DT) in Healthcare 4.0 (H4.0) presents a digital model of the patient with all its biological properties and characteristics. One of the application areas is patient respiration monitoring for enhanced patient care and decision support to healthcare professionals. Obtrusive methods of patient monitoring create hindrances in the patient's daily routine. This research presents a novel DT model (ResDT) based on Wi-Fi Carrier State Information (CSI), improved signal processing, and Machine Learning (ML) algorithms for monitoring and classification (binary and multi-class) of patient respiration. A Wi-Fi sensor ESP32 with Wi-Fi CSI was utilized for the collection of respiration data. This provides an added advantage of unobtrusive monitoring of patient vital signs. The Patient's Breaths Per Minute (BPM) is estimated from raw sensor data through the integration of multiple signal processing methodologies for denoising (smoothing and filtering) and dimensionality reduction (PCA, SVM, EMD, EMD-PCA). Multiple filters and dimensionality reduction methodologies are compared for accurate BPM estimation. The elliptical filter provides a relatively better estimation of the BPM with 87.5% accurate estimation as compared to other bandpass filters such as Butterworth (BF), Chebyshev type 1 Filter (CH1), Chebyshev type 2 Filter (CH2), and wavelet Decomposition (62.5%, 75%, 68.75%, and 75% respectively). Principal Component Analysis (PCA) was performed to provide better dimensionality reduction with 87.5% accurate BPM values compared to EMD, SVD, and EMD-PCA (57%, 44%, and 44% respectively). Additionally, the fine tree algorithm, from the implemented 21 ML supervised classification algorithms with K-fold crossvalidation, was observed to be the optimal choice for multi-class and binary-class classification problems in the presented ResDT model with 96.9% and 95.8% accuracy respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的春发布了新的文献求助10
刚刚
吴博文完成签到,获得积分20
刚刚
1秒前
陈隆完成签到,获得积分10
1秒前
科研通AI2S应助li采纳,获得10
1秒前
无奈的豆沙包完成签到 ,获得积分10
2秒前
共享精神应助小李采纳,获得10
3秒前
隐形曼青应助BY采纳,获得30
4秒前
上官若男应助被淹死的鱼采纳,获得30
4秒前
依依发布了新的文献求助10
4秒前
orixero应助白居采纳,获得10
4秒前
4秒前
江小雪发布了新的文献求助10
5秒前
orixero应助米克采纳,获得10
5秒前
5秒前
情怀应助hsialy采纳,获得10
7秒前
7秒前
陈隆完成签到,获得积分10
8秒前
Yanglk发布了新的文献求助10
9秒前
NexusExplorer应助小李同学采纳,获得10
9秒前
科目三应助芝麻采纳,获得10
10秒前
如意的尔竹完成签到 ,获得积分10
10秒前
11秒前
浮游应助lisier采纳,获得10
12秒前
12秒前
亮亮完成签到,获得积分10
12秒前
吴博文发布了新的文献求助10
13秒前
13秒前
bkagyin应助快看不到太阳采纳,获得10
13秒前
14秒前
琪凯定理完成签到,获得积分10
14秒前
扶南发布了新的文献求助10
16秒前
16秒前
Refuel发布了新的文献求助10
17秒前
小二郎应助cainiao采纳,获得10
18秒前
18秒前
19秒前
JamesPei应助吴博文采纳,获得10
20秒前
研友_方达完成签到,获得积分10
21秒前
小李发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429