亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Multi-source Information Fusion Method for Mobile Robot Visual-inertial Navigation

移动机器人 计算机科学 计算机视觉 人工智能 传感器融合 信息融合 移动机器人导航 机器人 机器人控制
作者
Changzhen Xu,Sen Zhang,Kaice Jiang
标识
DOI:10.1109/icma57826.2023.10216225
摘要

Vision sensors have the advantages of low cost and low structural complexity. However, in certain challenging scenarios, such as high dynamic range and high-speed motion, tracking failures and inaccurate positioning may occur. While a single sensor excels in specific aspects of SLAM technology, the integration of multiple sources of information has become crucial in the field of vision-based SLAM. To address the limitations of pure visual sensors in the SLAM system, a visual-inertial fusion strategy based on multi-sensor fusion is proposed. By incorporating inertial navigation units, the SLAM system gains absolute scale information, and establishing temporal alignment between camera frames enhances calculations. This approach improves the accuracy and robustness of the mobile robot's positioning and mapping system, enabling the complementary utilization of angular velocity and acceleration data from the IMU and visual camera sensor. Experimental results demonstrate significant enhancements compared to the ORBSLAM2 algorithm, with absolute errors reduced by approximately 25% to 60% and relative errors improved by 70% to 90%. Moreover, the proposed method achieves higher accuracy in calculating attitude changes between adjacent frames.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助洞两采纳,获得10
3秒前
7秒前
淡然的蓝天完成签到 ,获得积分10
8秒前
huayu完成签到,获得积分10
10秒前
11秒前
猕猴桃完成签到,获得积分10
12秒前
余亚东发布了新的文献求助10
13秒前
wql完成签到,获得积分10
15秒前
江辰汐月发布了新的文献求助10
15秒前
情怀应助yik采纳,获得10
16秒前
从容冷安完成签到 ,获得积分10
19秒前
乐乐应助辛勤的映波采纳,获得10
22秒前
Hissio完成签到,获得积分10
26秒前
29秒前
栋栋完成签到 ,获得积分10
32秒前
1234完成签到,获得积分20
33秒前
我是老大应助甜蜜乐松采纳,获得10
33秒前
ceeray23发布了新的文献求助20
34秒前
36秒前
43秒前
William_l_c完成签到,获得积分10
49秒前
江辰汐月完成签到,获得积分10
57秒前
小二郎应助liuliu采纳,获得10
57秒前
一枚小豆完成签到,获得积分10
59秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
pK完成签到 ,获得积分10
1分钟前
朴实的小萱完成签到 ,获得积分10
1分钟前
liuliu发布了新的文献求助10
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
zxy完成签到,获得积分20
1分钟前
1分钟前
lcw1998完成签到 ,获得积分10
1分钟前
wenwj9发布了新的文献求助30
1分钟前
李爱国应助余亚东采纳,获得10
1分钟前
陈谦嵩完成签到 ,获得积分10
1分钟前
zxy发布了新的文献求助10
1分钟前
服了您完成签到 ,获得积分10
1分钟前
li完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690909
关于积分的说明 14866536
捐赠科研通 4706185
什么是DOI,文献DOI怎么找? 2542718
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276