计算机科学
人工智能
计算机视觉
图像(数学)
外语
机器视觉
自然语言处理
语言学
语音识别
哲学
作者
Wenhui Wang,Hangbo Bao,Dong Li,Johan Björck,Zhiliang Peng,Qiang Liu,Kriti Aggarwal,Owais Khan Mohammed,Saksham Singhal,Subhojit Som,Furu Wei
标识
DOI:10.1109/cvpr52729.2023.01838
摘要
A big convergence of language, vision, and multimodal pretraining is emerging. In this work, we introduce a general-purpose multimodal foundation model BEIT-3, which achieves excellent transfer performance on both vision and vision-language tasks. Specifically, we advance the big convergence from three aspects: backbone architecture, pretraining task, and model scaling up. We use Multiway Transformers for general-purpose modeling, where the modular architecture enables both deep fusion and modality-specific encoding. Based on the shared backbone, we perform masked "language" modeling on images (Imglish), texts (English), and image-text pairs ("parallel sentences") in a unified manner. Experimental results show that BEIT-3 obtains remarkable performance on object detection (COCO), semantic segmentation (ADE20K), image classification (ImageNet), visual reasoning (NLVR2), visual question answering (VQAv2), image captioning (COCO), and cross-modal retrieval (Flickr30K, COCO).
科研通智能强力驱动
Strongly Powered by AbleSci AI