EDSV-Net: An efficient defect segmentation network based on visual attention and visual perception

计算机科学 分割 人工智能 模式识别(心理学) 特征(语言学) 卷积神经网络 相似性(几何) 卷积(计算机科学) 机器学习 人工神经网络 数据挖掘 图像(数学) 哲学 语言学
作者
Yanqing Huang,Junfeng Jing,Siyu Sheng,Zhen Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121529-121529 被引量:1
标识
DOI:10.1016/j.eswa.2023.121529
摘要

In industrial production, surface defect detection algorithms based on convolutional neural networks have been widely studied to improve production quality. However, for practical applications, there are still many issues to be solved, such as the complexity and diversity of defect categories, the difficulty of obtaining defect samples, and the difficulty of existing algorithms in accurately segmenting defects. To solve these issues, we present an effective defect segmentation network based on visual attention and visual perception termed EDSV-Net. Specifically, we use ResNet18 as the backbone network in EDSV-Net. Then a multi-scale feature extraction (MSFE) module is introduced to enhance the scale invariance of high-level features and the diversity of contextual features. In addition, a spatial attention (SA) model combined with a channel attention (CA) model is applied to low level features and MSFE features, respectively, to extract more effective spatial and semantic information. Moreover, a depthwise separable convolution is introduced to reduce the network complexity. Finally, due to the issues of existing defect detection algorithms ignoring structural similarity and defects being difficult to obtain, we design a balanced defect and structural measure loss function. Meanwhile, we propose a structural similarity measure, which combines the pixel similarity for evaluation. EDSV-Net only requires no more than 60 random abnormal samples to obtain accurate segmentation results and the real-time performance meets the requirements of actual industrial production. Based on three challenging real-world defect datasets, the results of the evaluation demonstrate that EDSV-Net outperforms seven state-of-the-art methods on accuracy and real-time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
魏煜佳完成签到,获得积分10
2秒前
3秒前
Lynne发布了新的文献求助10
5秒前
sally发布了新的文献求助10
6秒前
baihehuakai发布了新的文献求助30
7秒前
8秒前
酷波er应助鱿鱼苦瓜汤采纳,获得10
8秒前
9秒前
10秒前
10秒前
11秒前
lian发布了新的文献求助10
14秒前
不想看文献完成签到 ,获得积分10
15秒前
刘哔发布了新的文献求助10
15秒前
善学以致用应助Lynne采纳,获得10
16秒前
收醉人发布了新的文献求助10
17秒前
11发布了新的文献求助10
17秒前
顷梦完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
djbj2022发布了新的文献求助10
22秒前
WN发布了新的文献求助10
22秒前
messyknots完成签到,获得积分10
23秒前
刘哔完成签到,获得积分10
23秒前
23秒前
烂漫忆山关注了科研通微信公众号
23秒前
熊猫完成签到 ,获得积分10
24秒前
深情安青应助王小红采纳,获得10
24秒前
pluto应助文文采纳,获得10
24秒前
shiqiang mu应助11采纳,获得10
27秒前
斯文败类应助11采纳,获得10
27秒前
27秒前
27秒前
lanlan完成签到 ,获得积分10
28秒前
29秒前
29秒前
鹏笑发布了新的文献求助10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425233
求助须知:如何正确求助?哪些是违规求助? 4539321
关于积分的说明 14166837
捐赠科研通 4456547
什么是DOI,文献DOI怎么找? 2444245
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412581