EDSV-Net: An efficient defect segmentation network based on visual attention and visual perception

计算机科学 分割 人工智能 模式识别(心理学) 特征(语言学) 卷积神经网络 相似性(几何) 卷积(计算机科学) 机器学习 人工神经网络 数据挖掘 图像(数学) 哲学 语言学
作者
Yanqing Huang,Junfeng Jing,Siyu Sheng,Zhen Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121529-121529 被引量:1
标识
DOI:10.1016/j.eswa.2023.121529
摘要

In industrial production, surface defect detection algorithms based on convolutional neural networks have been widely studied to improve production quality. However, for practical applications, there are still many issues to be solved, such as the complexity and diversity of defect categories, the difficulty of obtaining defect samples, and the difficulty of existing algorithms in accurately segmenting defects. To solve these issues, we present an effective defect segmentation network based on visual attention and visual perception termed EDSV-Net. Specifically, we use ResNet18 as the backbone network in EDSV-Net. Then a multi-scale feature extraction (MSFE) module is introduced to enhance the scale invariance of high-level features and the diversity of contextual features. In addition, a spatial attention (SA) model combined with a channel attention (CA) model is applied to low level features and MSFE features, respectively, to extract more effective spatial and semantic information. Moreover, a depthwise separable convolution is introduced to reduce the network complexity. Finally, due to the issues of existing defect detection algorithms ignoring structural similarity and defects being difficult to obtain, we design a balanced defect and structural measure loss function. Meanwhile, we propose a structural similarity measure, which combines the pixel similarity for evaluation. EDSV-Net only requires no more than 60 random abnormal samples to obtain accurate segmentation results and the real-time performance meets the requirements of actual industrial production. Based on three challenging real-world defect datasets, the results of the evaluation demonstrate that EDSV-Net outperforms seven state-of-the-art methods on accuracy and real-time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落寞白曼完成签到,获得积分10
2秒前
2秒前
海鸥海鸥发布了新的文献求助10
3秒前
别让我误会完成签到 ,获得积分10
4秒前
4秒前
KK发布了新的文献求助30
4秒前
娃娃完成签到 ,获得积分20
4秒前
科研通AI5应助结实的冰真采纳,获得30
4秒前
冷静的小熊猫完成签到,获得积分10
5秒前
Donnie完成签到,获得积分10
5秒前
若尘完成签到,获得积分10
6秒前
椰子完成签到 ,获得积分10
6秒前
6秒前
细腻涵菱完成签到,获得积分10
7秒前
吕耀炜完成签到,获得积分10
7秒前
7秒前
7秒前
简称王完成签到 ,获得积分10
7秒前
蓝莓松饼完成签到,获得积分10
8秒前
一路高飛完成签到,获得积分10
8秒前
赘婿应助andyxrz采纳,获得10
8秒前
Zhang完成签到,获得积分10
8秒前
9秒前
年轻冥茗完成签到,获得积分10
9秒前
apple发布了新的文献求助10
10秒前
CarterXD完成签到,获得积分10
10秒前
紧张的友灵完成签到,获得积分10
10秒前
SciGPT应助之仔饼采纳,获得10
11秒前
liudiqiu应助追寻的易烟采纳,获得10
11秒前
Chem is try发布了新的文献求助10
11秒前
11秒前
vsoar完成签到,获得积分10
11秒前
12秒前
13秒前
GGGGGGGGGG发布了新的文献求助10
13秒前
13秒前
打打应助hhh采纳,获得10
14秒前
抓恐龙关注了科研通微信公众号
14秒前
碳点godfather完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672