质体
三角褐指藻
生物
叶绿体
生物化学
蛋白质组
植物
硅藻
基因
作者
Teng Huang,Yufang Pan,Éric Maréchal,Hanhua Hu
出处
期刊:Plant Journal
[Wiley]
日期:2023-09-21
卷期号:117 (2): 385-403
被引量:10
摘要
SUMMARY Phaeodactylum tricornutum plastid is surrounded by four membranes, and its protein composition and function remain mysterious. In this study, the P. tricornutum plastid‐enriched fraction was obtained and 2850 proteins were identified, including 92 plastid‐encoded proteins, through label‐free quantitative proteomic technology. Among them, 839 nuclear‐encoded proteins were further determined to be plastidial proteins based on the BLAST alignments within Plant Proteome DataBase and subcellular localization prediction, in spite of the strong contamination by mitochondria‐encoded proteins and putative plasma membrane proteins. According to our proteomic data, we reconstructed the metabolic pathways and highlighted the hybrid nature of this diatom plastid. Triacylglycerol (TAG) hydrolysis and glycolysis, as well as photosynthesis, glycan metabolism, and tocopherol and triterpene biosynthesis, occur in the plastid. In addition, the synthesis of long‐chain acyl‐CoAs, elongation, and desaturation of fatty acids (FAs), and synthesis of lipids including TAG are confined in the four‐layered‐membrane plastid based on the proteomic and GFP‐fusion localization data. The whole process of generation of docosahexaenoic acid (22:6) from palmitic acid (16:0), via elongation and desaturation of FAs, occurs in the chloroplast endoplasmic reticulum membrane, the outermost membrane of the plastid. Desaturation that generates 16:4 from 16:0 occurs in the plastid stroma and outer envelope membrane. Quantitative analysis of glycerolipids between whole cells and isolated plastids shows similar composition, and the FA profile of TAG was not different. This study shows that the diatom plastid combines functions usually separated in photosynthetic eukaryotes, and differs from green alga and plant chloroplasts by undertaking the whole process of lipid biosynthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI