Integration of Double-Weighted Bayesian and Simplified Methods for Predicting Seismic Liquefaction Based on Multiple Databases

贝叶斯概率 加权 计算机科学 液化 随机森林 概率逻辑 贝叶斯推理 灵敏度(控制系统) 数据挖掘 算法 机器学习 人工智能 工程类 岩土工程 放射科 医学 电子工程
作者
Jilei Hu
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:23 (12) 被引量:1
标识
DOI:10.1061/ijgnai.gmeng-8548
摘要

The Bayesian method is a versatile data-driven machine learning method that performs well in predicting seismic-induced soil liquefaction, but it does not consider physical mechanisms and its performance is easily affected by class imbalance and attribute weights. In addition, simplified methods consider the mechanism, while simplified methods based on different in situ tests often produce conflicting results for the same site, leaving engineers unable to decide which result to choose. To overcome the aforementioned problems, this paper proposes a framework for combining multiple simplified methods based on the double-weighted Bayesian combination (DWBC) approach, considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the DWBC model. Compared with the three simplified methods based on different in situ tests, the proposed DWBC model significantly improves the liquefaction prediction accuracy and converts the deterministic prediction result to probabilistic. Furthermore, when comparing different ensemble strategies (e.g., majority voting, simple average, and weighted average approaches), different Bayesian combination modes, and the random forest (RF) model based on 250 liquefaction multidatabases using various performance measures, the DWBC model performs the best, followed by the Bayesian combination model without weighting and the majority voting method, while the RF model performs the worst. The performance of the DWBC model depends on the number and mode of the basic classifiers and the performance of the basic classifiers. The sensitivity of the DWBC method with respect to the class imbalance is also discussed.Practical ApplicationsSeismic liquefaction is a form of earthquake-induced disaster phenomenon. This study constructs an ensemble model for predicting earthquake-induced liquefaction based on the double-weighted Bayesian method to improve the prediction accuracy. The ensemble model takes the prediction results of the widely used simplified methods in various in situ test databases such as standard penetration test, cone penetration test, and shear wave velocity as inputs and liquefaction or nonliquefaction as outputs, while considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the ensemble model. Thus, the ensemble model can avoid the situation where simplified models predict conflicting results in different in situ test databases for the same site and convert the deterministic prediction results of simplified methods into a probabilistic result. In this study, the proposed ensemble model performs much better than the simplified models and other ensemble models such as the random forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助alexyang采纳,获得10
1秒前
Frank应助过时的小海豚采纳,获得10
1秒前
专注白昼完成签到,获得积分10
2秒前
小青椒应助little elvins采纳,获得30
2秒前
2秒前
淳恨战士完成签到,获得积分10
3秒前
狂野傲珊发布了新的文献求助10
3秒前
tianchen完成签到,获得积分10
4秒前
高屋建瓴完成签到,获得积分10
4秒前
wonderful发布了新的文献求助10
4秒前
wanci应助端庄煎饼采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
时光悠应助科研的小狗采纳,获得30
5秒前
顾矜应助猪猪hero采纳,获得10
6秒前
我不吃葱完成签到 ,获得积分10
7秒前
逍遥关注了科研通微信公众号
7秒前
7秒前
爱笑的冷风完成签到,获得积分10
7秒前
复杂曼梅发布了新的文献求助10
7秒前
干昕慈发布了新的文献求助20
7秒前
8秒前
8秒前
9秒前
10秒前
LL发布了新的文献求助10
10秒前
wanci应助白粥采纳,获得10
11秒前
猪猪hero发布了新的文献求助10
12秒前
123455完成签到,获得积分10
12秒前
耿耿完成签到,获得积分20
12秒前
13秒前
烦烦烦发布了新的文献求助30
13秒前
jiaxiang完成签到,获得积分20
13秒前
AHU_Why发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
18秒前
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483