Integration of Double-Weighted Bayesian and Simplified Methods for Predicting Seismic Liquefaction Based on Multiple Databases

贝叶斯概率 加权 计算机科学 液化 随机森林 概率逻辑 贝叶斯推理 灵敏度(控制系统) 数据挖掘 算法 机器学习 人工智能 工程类 岩土工程 医学 电子工程 放射科
作者
Jilei Hu
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:23 (12) 被引量:1
标识
DOI:10.1061/ijgnai.gmeng-8548
摘要

The Bayesian method is a versatile data-driven machine learning method that performs well in predicting seismic-induced soil liquefaction, but it does not consider physical mechanisms and its performance is easily affected by class imbalance and attribute weights. In addition, simplified methods consider the mechanism, while simplified methods based on different in situ tests often produce conflicting results for the same site, leaving engineers unable to decide which result to choose. To overcome the aforementioned problems, this paper proposes a framework for combining multiple simplified methods based on the double-weighted Bayesian combination (DWBC) approach, considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the DWBC model. Compared with the three simplified methods based on different in situ tests, the proposed DWBC model significantly improves the liquefaction prediction accuracy and converts the deterministic prediction result to probabilistic. Furthermore, when comparing different ensemble strategies (e.g., majority voting, simple average, and weighted average approaches), different Bayesian combination modes, and the random forest (RF) model based on 250 liquefaction multidatabases using various performance measures, the DWBC model performs the best, followed by the Bayesian combination model without weighting and the majority voting method, while the RF model performs the worst. The performance of the DWBC model depends on the number and mode of the basic classifiers and the performance of the basic classifiers. The sensitivity of the DWBC method with respect to the class imbalance is also discussed.Practical ApplicationsSeismic liquefaction is a form of earthquake-induced disaster phenomenon. This study constructs an ensemble model for predicting earthquake-induced liquefaction based on the double-weighted Bayesian method to improve the prediction accuracy. The ensemble model takes the prediction results of the widely used simplified methods in various in situ test databases such as standard penetration test, cone penetration test, and shear wave velocity as inputs and liquefaction or nonliquefaction as outputs, while considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the ensemble model. Thus, the ensemble model can avoid the situation where simplified models predict conflicting results in different in situ test databases for the same site and convert the deterministic prediction results of simplified methods into a probabilistic result. In this study, the proposed ensemble model performs much better than the simplified models and other ensemble models such as the random forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jackie完成签到,获得积分10
刚刚
wenmei发布了新的文献求助10
刚刚
欣喜书桃完成签到,获得积分10
刚刚
无名完成签到,获得积分10
1秒前
我是X哥完成签到,获得积分10
1秒前
小张呢好完成签到,获得积分10
2秒前
xij发布了新的文献求助10
2秒前
newman完成签到,获得积分10
2秒前
居学尉完成签到,获得积分0
2秒前
2秒前
2秒前
情怀应助Moonlight采纳,获得10
2秒前
123123发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
徐矜完成签到,获得积分10
5秒前
安详的断缘完成签到,获得积分10
5秒前
5秒前
巧可脆脆完成签到,获得积分10
5秒前
小汪完成签到,获得积分10
5秒前
卡拉米完成签到,获得积分10
5秒前
呆鸥完成签到,获得积分10
6秒前
nanan完成签到,获得积分10
6秒前
6秒前
翠翠完成签到,获得积分10
7秒前
xwh完成签到,获得积分10
7秒前
xij完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
roosterpan发布了新的文献求助10
7秒前
8秒前
8秒前
无花果应助可爱从霜采纳,获得10
8秒前
烂漫含雁发布了新的文献求助10
8秒前
9秒前
清茶完成签到,获得积分10
9秒前
9秒前
ASen发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599250
求助须知:如何正确求助?哪些是违规求助? 4009968
关于积分的说明 12414035
捐赠科研通 3689591
什么是DOI,文献DOI怎么找? 2033925
邀请新用户注册赠送积分活动 1067094
科研通“疑难数据库(出版商)”最低求助积分说明 952171