Integration of Double-Weighted Bayesian and Simplified Methods for Predicting Seismic Liquefaction Based on Multiple Databases

贝叶斯概率 加权 计算机科学 液化 随机森林 概率逻辑 贝叶斯推理 灵敏度(控制系统) 数据挖掘 算法 机器学习 人工智能 工程类 岩土工程 医学 电子工程 放射科
作者
Jilei Hu
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:23 (12) 被引量:1
标识
DOI:10.1061/ijgnai.gmeng-8548
摘要

The Bayesian method is a versatile data-driven machine learning method that performs well in predicting seismic-induced soil liquefaction, but it does not consider physical mechanisms and its performance is easily affected by class imbalance and attribute weights. In addition, simplified methods consider the mechanism, while simplified methods based on different in situ tests often produce conflicting results for the same site, leaving engineers unable to decide which result to choose. To overcome the aforementioned problems, this paper proposes a framework for combining multiple simplified methods based on the double-weighted Bayesian combination (DWBC) approach, considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the DWBC model. Compared with the three simplified methods based on different in situ tests, the proposed DWBC model significantly improves the liquefaction prediction accuracy and converts the deterministic prediction result to probabilistic. Furthermore, when comparing different ensemble strategies (e.g., majority voting, simple average, and weighted average approaches), different Bayesian combination modes, and the random forest (RF) model based on 250 liquefaction multidatabases using various performance measures, the DWBC model performs the best, followed by the Bayesian combination model without weighting and the majority voting method, while the RF model performs the worst. The performance of the DWBC model depends on the number and mode of the basic classifiers and the performance of the basic classifiers. The sensitivity of the DWBC method with respect to the class imbalance is also discussed.Practical ApplicationsSeismic liquefaction is a form of earthquake-induced disaster phenomenon. This study constructs an ensemble model for predicting earthquake-induced liquefaction based on the double-weighted Bayesian method to improve the prediction accuracy. The ensemble model takes the prediction results of the widely used simplified methods in various in situ test databases such as standard penetration test, cone penetration test, and shear wave velocity as inputs and liquefaction or nonliquefaction as outputs, while considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the ensemble model. Thus, the ensemble model can avoid the situation where simplified models predict conflicting results in different in situ test databases for the same site and convert the deterministic prediction results of simplified methods into a probabilistic result. In this study, the proposed ensemble model performs much better than the simplified models and other ensemble models such as the random forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的元珊完成签到,获得积分10
1秒前
歪歪踢完成签到 ,获得积分10
1秒前
疯花血月完成签到,获得积分10
1秒前
达不刘完成签到,获得积分10
1秒前
3秒前
ZZZ发布了新的文献求助10
3秒前
4秒前
搜集达人应助脆香可丽饼采纳,获得10
4秒前
4秒前
呼延乐珍关注了科研通微信公众号
5秒前
5秒前
Ryan123完成签到,获得积分20
6秒前
7秒前
7秒前
可耐的初翠完成签到,获得积分10
7秒前
rose发布了新的文献求助10
8秒前
9秒前
老迟到的可兰完成签到 ,获得积分10
9秒前
小方发布了新的文献求助10
11秒前
缥缈凌萱发布了新的文献求助10
11秒前
14秒前
革命努力完成签到,获得积分10
15秒前
sjk发布了新的文献求助10
15秒前
Archy完成签到,获得积分10
15秒前
赘婿应助zzz采纳,获得30
16秒前
星辰大海应助艾力库提采纳,获得10
17秒前
粱夏烟发布了新的文献求助10
18秒前
共享精神应助洁净的文涛采纳,获得10
18秒前
牛小牛完成签到,获得积分10
19秒前
爱听歌的峻熙完成签到,获得积分10
19秒前
大模型应助缥缈凌萱采纳,获得10
19秒前
RRRosie完成签到,获得积分10
19秒前
薰硝壤应助康康采纳,获得10
21秒前
科研冰山完成签到 ,获得积分10
21秒前
充电宝应助朴实的成风采纳,获得10
22秒前
车佳莹发布了新的文献求助10
22秒前
子车茗应助紫葡萄采纳,获得10
22秒前
23秒前
Orange应助东风恶采纳,获得10
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870