Integration of Double-Weighted Bayesian and Simplified Methods for Predicting Seismic Liquefaction Based on Multiple Databases

贝叶斯概率 加权 计算机科学 液化 随机森林 概率逻辑 贝叶斯推理 灵敏度(控制系统) 数据挖掘 算法 机器学习 人工智能 工程类 岩土工程 放射科 医学 电子工程
作者
Jilei Hu
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:23 (12) 被引量:1
标识
DOI:10.1061/ijgnai.gmeng-8548
摘要

The Bayesian method is a versatile data-driven machine learning method that performs well in predicting seismic-induced soil liquefaction, but it does not consider physical mechanisms and its performance is easily affected by class imbalance and attribute weights. In addition, simplified methods consider the mechanism, while simplified methods based on different in situ tests often produce conflicting results for the same site, leaving engineers unable to decide which result to choose. To overcome the aforementioned problems, this paper proposes a framework for combining multiple simplified methods based on the double-weighted Bayesian combination (DWBC) approach, considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the DWBC model. Compared with the three simplified methods based on different in situ tests, the proposed DWBC model significantly improves the liquefaction prediction accuracy and converts the deterministic prediction result to probabilistic. Furthermore, when comparing different ensemble strategies (e.g., majority voting, simple average, and weighted average approaches), different Bayesian combination modes, and the random forest (RF) model based on 250 liquefaction multidatabases using various performance measures, the DWBC model performs the best, followed by the Bayesian combination model without weighting and the majority voting method, while the RF model performs the worst. The performance of the DWBC model depends on the number and mode of the basic classifiers and the performance of the basic classifiers. The sensitivity of the DWBC method with respect to the class imbalance is also discussed.Practical ApplicationsSeismic liquefaction is a form of earthquake-induced disaster phenomenon. This study constructs an ensemble model for predicting earthquake-induced liquefaction based on the double-weighted Bayesian method to improve the prediction accuracy. The ensemble model takes the prediction results of the widely used simplified methods in various in situ test databases such as standard penetration test, cone penetration test, and shear wave velocity as inputs and liquefaction or nonliquefaction as outputs, while considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the ensemble model. Thus, the ensemble model can avoid the situation where simplified models predict conflicting results in different in situ test databases for the same site and convert the deterministic prediction results of simplified methods into a probabilistic result. In this study, the proposed ensemble model performs much better than the simplified models and other ensemble models such as the random forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助摆哥采纳,获得10
1秒前
刘宸希完成签到 ,获得积分10
1秒前
3秒前
辛勤夜柳发布了新的文献求助10
3秒前
4秒前
5秒前
打打应助怕孤独的海瑶采纳,获得10
5秒前
Zenia应助小鱼采纳,获得10
6秒前
6秒前
默默的斑马完成签到,获得积分10
6秒前
科研大印发布了新的文献求助10
7秒前
Lucas应助RunsenXu采纳,获得10
7秒前
科研通AI6应助www采纳,获得10
7秒前
shuang完成签到 ,获得积分10
8秒前
Ysk完成签到,获得积分10
8秒前
脑洞疼应助MCL1021采纳,获得10
9秒前
智丹发布了新的文献求助10
10秒前
sci来来来完成签到,获得积分10
10秒前
wlscj给传统的孤丝的求助进行了留言
10秒前
WTaMi发布了新的文献求助10
11秒前
朱博超发布了新的文献求助10
12秒前
傻子也能搞学术吗完成签到 ,获得积分10
12秒前
13秒前
13秒前
无花果应助科研大印采纳,获得10
14秒前
Akim应助ltxinanjiao采纳,获得10
15秒前
sci来来来发布了新的文献求助10
15秒前
慕青应助LIO采纳,获得10
16秒前
16秒前
李爱国应助摆哥采纳,获得10
17秒前
18秒前
18秒前
www发布了新的文献求助10
18秒前
shama发布了新的文献求助10
18秒前
科研通AI6应助ddw采纳,获得10
18秒前
1023325610发布了新的文献求助10
19秒前
19秒前
AHA完成签到,获得积分10
19秒前
SW冒险家完成签到 ,获得积分10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544