Integration of Double-Weighted Bayesian and Simplified Methods for Predicting Seismic Liquefaction Based on Multiple Databases

贝叶斯概率 加权 计算机科学 液化 随机森林 概率逻辑 贝叶斯推理 灵敏度(控制系统) 数据挖掘 算法 机器学习 人工智能 工程类 岩土工程 医学 电子工程 放射科
作者
Jilei Hu
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:23 (12) 被引量:1
标识
DOI:10.1061/ijgnai.gmeng-8548
摘要

The Bayesian method is a versatile data-driven machine learning method that performs well in predicting seismic-induced soil liquefaction, but it does not consider physical mechanisms and its performance is easily affected by class imbalance and attribute weights. In addition, simplified methods consider the mechanism, while simplified methods based on different in situ tests often produce conflicting results for the same site, leaving engineers unable to decide which result to choose. To overcome the aforementioned problems, this paper proposes a framework for combining multiple simplified methods based on the double-weighted Bayesian combination (DWBC) approach, considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the DWBC model. Compared with the three simplified methods based on different in situ tests, the proposed DWBC model significantly improves the liquefaction prediction accuracy and converts the deterministic prediction result to probabilistic. Furthermore, when comparing different ensemble strategies (e.g., majority voting, simple average, and weighted average approaches), different Bayesian combination modes, and the random forest (RF) model based on 250 liquefaction multidatabases using various performance measures, the DWBC model performs the best, followed by the Bayesian combination model without weighting and the majority voting method, while the RF model performs the worst. The performance of the DWBC model depends on the number and mode of the basic classifiers and the performance of the basic classifiers. The sensitivity of the DWBC method with respect to the class imbalance is also discussed.Practical ApplicationsSeismic liquefaction is a form of earthquake-induced disaster phenomenon. This study constructs an ensemble model for predicting earthquake-induced liquefaction based on the double-weighted Bayesian method to improve the prediction accuracy. The ensemble model takes the prediction results of the widely used simplified methods in various in situ test databases such as standard penetration test, cone penetration test, and shear wave velocity as inputs and liquefaction or nonliquefaction as outputs, while considering the effects of combination mode, class imbalance, and contribution weights of the simplified methods on the performance of the ensemble model. Thus, the ensemble model can avoid the situation where simplified models predict conflicting results in different in situ test databases for the same site and convert the deterministic prediction results of simplified methods into a probabilistic result. In this study, the proposed ensemble model performs much better than the simplified models and other ensemble models such as the random forest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗书本完成签到,获得积分10
1秒前
Merry发布了新的文献求助10
1秒前
3秒前
3秒前
well发布了新的文献求助10
4秒前
筱莜完成签到 ,获得积分10
4秒前
summer发布了新的文献求助10
5秒前
大个应助钙离子采纳,获得10
6秒前
7秒前
10秒前
10秒前
小灰灰发布了新的文献求助10
10秒前
shimmer完成签到,获得积分10
11秒前
Merry完成签到,获得积分10
11秒前
11秒前
小小完成签到,获得积分10
12秒前
絮甯发布了新的文献求助10
13秒前
well完成签到,获得积分20
13秒前
13秒前
14秒前
花椒泡茶完成签到 ,获得积分10
14秒前
15秒前
kyo发布了新的文献求助10
15秒前
shimmer发布了新的文献求助10
15秒前
16秒前
所所应助或无情采纳,获得10
16秒前
朴素的月光完成签到,获得积分10
17秒前
18秒前
吴丹完成签到,获得积分10
19秒前
19秒前
陈瑞发布了新的文献求助10
20秒前
科研通AI2S应助小南采纳,获得10
20秒前
年轻的咖啡豆完成签到,获得积分10
21秒前
22秒前
123发布了新的文献求助10
23秒前
吃饱再睡发布了新的文献求助10
23秒前
24秒前
24秒前
小权拳的权完成签到,获得积分10
24秒前
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959519
求助须知:如何正确求助?哪些是违规求助? 3505756
关于积分的说明 11125718
捐赠科研通 3237616
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802902