已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predictive Value of Pre-Treatment MRI Radiomics for Distant Brain Metastases Following Stereotactic Radiosurgery/Radiotherapy

放射外科 医学 流体衰减反转恢复 无线电技术 比例危险模型 一致性 核医学 放射科 放射治疗 危险系数 多元分析 预测值 单变量 放射治疗计划 磁共振成像 多元统计 内科学 置信区间 机器学习 计算机科学
作者
Joseph Bae,Kartik Mani,Ewa Zabrocka,Renee Cattell,B. O'Grady,David Payne,John Roberson,Samuel Ryu,Prateek Prasanna
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): e84-e84
标识
DOI:10.1016/j.ijrobp.2023.06.835
摘要

Local intracranial therapy for brain metastases (BM) has taken on particular importance as survival among metastatic patients improves. However, the development of distant BMs (DBMs) outside the treated area remains a stubborn problem for which canonical clinical features (age, histology, ECOG PS) have limited predictive capability. In this study, we hypothesized that MRI-based "radiomic" features (sub-visual cues extracted from diagnostic images) can accurately predict the time-to-DBM development (TTDD) on a retrospectively curated dataset of patients treated with stereotactic radiosurgery/radiotherapy (SRS/SRT).We queried our treatment planning system for patients treated with brain SRS/SRT between 2014 and 2021, and curated the incidence/timing of DBMs manually. Pre-RT MRI sequences (T1 pre, T1 post, T2, and FLAIR) and planning data were obtained for each patient. MRI and CT simulations were co-registered using affine transformations, and regions of interest (ROIs) were identified based on contoured structures (GTV) and discrete isodose ranges (0-25%, 25-50%, 50-75%, 75%+). Radiomic features were extracted from these ROIs, and clinical features (ECOG PS, tumor volume, age) were recorded for baseline comparison. Features were selected using Wald test scores from univariate Cox proportional hazard (CPH) models. Multivariate CPH models were then trained to predict TTDD using combinations of selected features. Predictive capability was evaluated using concordance index (c-index) values. A radiomic risk score (RRS) was created to discriminate patients with low and high-risk for DBMs, and evaluated using a log-rank test.A total of 105 patients were selected with a median follow up of 356 days. 53 patients developed DBMs (median time 118 days). Radiomic CPH models achieved a c-index of 0.63 compared to clinical baseline of 0.49. The combination of radiomic and clinical features achieved the highest c-index of 0.69. Overall, radiomic features with and without clinical features were able to stratify patients into low and high-risk groups with statistically significant differences in TTDD development (see Table 1). Clinical features alone were not significant. The most predictive radiomic features were identified within the T1 pre-contrast MRI from the 50-75% isodose regions, followed by T2 FLAIR/GTV and T2/GTV combinations.Radiomic features from routine MR scans were more predictive of TTDD than baseline clinical features. The contribution from the 50-75% isodose region suggests importance within the peritumoral environment in addition to the tumor itself.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Aman采纳,获得10
刚刚
所所应助博修采纳,获得10
1秒前
YanZhe发布了新的文献求助10
1秒前
2秒前
tian完成签到 ,获得积分10
2秒前
yui完成签到 ,获得积分10
2秒前
怕孤单的问雁完成签到,获得积分10
3秒前
zhiweiyan完成签到,获得积分10
4秒前
JamesPei应助a553355采纳,获得10
4秒前
吾心吾行关注了科研通微信公众号
4秒前
孙子文发布了新的文献求助10
4秒前
哇咔咔完成签到 ,获得积分10
5秒前
5秒前
郑总完成签到 ,获得积分10
10秒前
魏笑白完成签到 ,获得积分10
10秒前
上官若男应助mia采纳,获得10
12秒前
畅畅完成签到 ,获得积分10
14秒前
没有昵称完成签到 ,获得积分10
14秒前
15秒前
峰feng完成签到 ,获得积分10
16秒前
17秒前
子阅完成签到 ,获得积分10
20秒前
博修发布了新的文献求助10
22秒前
25秒前
idiom完成签到 ,获得积分10
25秒前
知性的颜完成签到 ,获得积分10
27秒前
You完成签到 ,获得积分10
27秒前
大模型应助孙子文采纳,获得10
28秒前
曾天祥应助博修采纳,获得100
28秒前
29秒前
禹山河发布了新的文献求助30
29秒前
丘比特应助YiXianCoA采纳,获得10
30秒前
呆呆不呆Zz完成签到,获得积分10
33秒前
lj完成签到 ,获得积分10
36秒前
ZXH发布了新的文献求助10
36秒前
40秒前
42秒前
43秒前
自然的茉莉完成签到,获得积分10
43秒前
CYL07完成签到 ,获得积分10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959928
求助须知:如何正确求助?哪些是违规求助? 3506172
关于积分的说明 11128138
捐赠科研通 3238123
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024