Predictive Value of Pre-Treatment MRI Radiomics for Distant Brain Metastases Following Stereotactic Radiosurgery/Radiotherapy

放射外科 医学 流体衰减反转恢复 无线电技术 比例危险模型 一致性 核医学 放射科 放射治疗 危险系数 多元分析 预测值 单变量 放射治疗计划 磁共振成像 多元统计 内科学 置信区间 机器学习 计算机科学
作者
Joseph Bae,Kartik Mani,Ewa Zabrocka,Renee Cattell,B. O'Grady,David Payne,John Roberson,Samuel Ryu,Prateek Prasanna
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e84-e84
标识
DOI:10.1016/j.ijrobp.2023.06.835
摘要

Local intracranial therapy for brain metastases (BM) has taken on particular importance as survival among metastatic patients improves. However, the development of distant BMs (DBMs) outside the treated area remains a stubborn problem for which canonical clinical features (age, histology, ECOG PS) have limited predictive capability. In this study, we hypothesized that MRI-based "radiomic" features (sub-visual cues extracted from diagnostic images) can accurately predict the time-to-DBM development (TTDD) on a retrospectively curated dataset of patients treated with stereotactic radiosurgery/radiotherapy (SRS/SRT).We queried our treatment planning system for patients treated with brain SRS/SRT between 2014 and 2021, and curated the incidence/timing of DBMs manually. Pre-RT MRI sequences (T1 pre, T1 post, T2, and FLAIR) and planning data were obtained for each patient. MRI and CT simulations were co-registered using affine transformations, and regions of interest (ROIs) were identified based on contoured structures (GTV) and discrete isodose ranges (0-25%, 25-50%, 50-75%, 75%+). Radiomic features were extracted from these ROIs, and clinical features (ECOG PS, tumor volume, age) were recorded for baseline comparison. Features were selected using Wald test scores from univariate Cox proportional hazard (CPH) models. Multivariate CPH models were then trained to predict TTDD using combinations of selected features. Predictive capability was evaluated using concordance index (c-index) values. A radiomic risk score (RRS) was created to discriminate patients with low and high-risk for DBMs, and evaluated using a log-rank test.A total of 105 patients were selected with a median follow up of 356 days. 53 patients developed DBMs (median time 118 days). Radiomic CPH models achieved a c-index of 0.63 compared to clinical baseline of 0.49. The combination of radiomic and clinical features achieved the highest c-index of 0.69. Overall, radiomic features with and without clinical features were able to stratify patients into low and high-risk groups with statistically significant differences in TTDD development (see Table 1). Clinical features alone were not significant. The most predictive radiomic features were identified within the T1 pre-contrast MRI from the 50-75% isodose regions, followed by T2 FLAIR/GTV and T2/GTV combinations.Radiomic features from routine MR scans were more predictive of TTDD than baseline clinical features. The contribution from the 50-75% isodose region suggests importance within the peritumoral environment in addition to the tumor itself.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
之风百度完成签到,获得积分10
1秒前
虞紫山发布了新的文献求助10
1秒前
3秒前
xiaoliu完成签到,获得积分10
3秒前
6秒前
JYY完成签到,获得积分10
8秒前
冯珂完成签到 ,获得积分10
10秒前
12秒前
小蘑菇应助JYY采纳,获得10
13秒前
13秒前
科研通AI2S应助修管子采纳,获得10
13秒前
思源应助隐形的雨雪采纳,获得10
13秒前
XL神放完成签到 ,获得积分10
13秒前
zhaoyuqing完成签到,获得积分10
15秒前
小哥881212完成签到,获得积分20
16秒前
张柔完成签到 ,获得积分10
17秒前
江蹇发布了新的文献求助10
17秒前
17秒前
17秒前
远山发布了新的文献求助10
18秒前
wwx完成签到,获得积分10
18秒前
19秒前
Jasper应助陶醉听寒采纳,获得30
21秒前
Hello应助朴实的豪采纳,获得10
22秒前
24秒前
付哈哈发布了新的文献求助10
24秒前
Ava应助慢半拍采纳,获得10
25秒前
27秒前
在水一方应助科研通管家采纳,获得10
28秒前
从容芮应助科研通管家采纳,获得10
28秒前
杳鸢应助科研通管家采纳,获得80
28秒前
28秒前
28秒前
ding应助科研通管家采纳,获得30
28秒前
杳鸢应助科研通管家采纳,获得80
28秒前
ding应助科研通管家采纳,获得10
28秒前
从容芮应助科研通管家采纳,获得20
28秒前
28秒前
所所应助科研通管家采纳,获得10
28秒前
充电宝应助科研通管家采纳,获得10
28秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158263
求助须知:如何正确求助?哪些是违规求助? 2809613
关于积分的说明 7882615
捐赠科研通 2468106
什么是DOI,文献DOI怎么找? 1313874
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956