Integrative analysis of cuproptosis‐associated genes for predicting immunotherapy response in single‐cell and multi‐cohort studies

生物 基因 癌变 小桶 计算生物学 卵巢癌 癌症研究 基因表达 癌症 生物信息学 遗传学 转录组
作者
Hua Li,Sheng Wang,Guangxiao Li,Jian Xiong,Lingshan Qin,Qirong Wen,Chaomin Yue
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:1
标识
DOI:10.1002/jgm.3600
摘要

Abstract Background The role of genes associated with the cuproptosis cell signaling pathway in prognosis and immunotherapy in ovarian cancer (OC) has been extensively investigated. In this study, we aimed to explore these mechanisms and establish a prognostic model for patients with OC using bioinformatics techniques. Methods We obtained the single cell sequencing data of ovarian cancer from the Gene Expression Omnibus (GEO) database and preprocessed the data. We analyzed a variety of factors including cuproptosis cell signal score, transcription factors, tumorigenesis and progression signals, gene set variation analysis (GSVA) and intercellular communication. Differential gene analysis was performed between groups with high and low cuproptosis cell signal scores, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Using bulk RNA sequencing data from The Cancer Genome Atlas, we used the least absolute shrinkage and selection operator (LASSO)‐Cox algorithm to develop cuproptosis cell signaling pathword‐related gene signatures and validated them with GEO ovarian cancer datasets. In addition, we analyzed the inherent rules of the genes involved in building the model using a variety of bioinformatics methods, including immune‐related analyses and single nucleotide polymorphisms. Molecular docking is used to screen potential therapeutic drugs. To confirm the analysis results, we performed various wet experiments such as western blot, cell counting kit 8 (CCK8) and clonogenesis tests to verify the role of the Von Willebrand Factor (VWF) gene in two ovarian cancer cell lines. Results Based on single‐cell data analysis, we found that endothelial cells and fibroblasts showed active substance synthesis and signaling pathway activation in OC, which further promoted immune cell suppression, cancer cell proliferation and metastasis. Ovarian cancer has a high tendency to metastasize, and cancer cells cooperate with other cells to promote disease progression. We developed a signature consisting of eight cuproptosis‐related genes (CRGs) (MAGEF1, DNPH1, RARRES1, NBL1, IFI27, VWF, OLFML3 and IGFBP4) that predicted overall survival in patients with ovarian cancer. The validity of this model is verified in an external GEO validation set. We observed active infiltrating states of immune cells in both the high‐ and low‐risk groups, although the specific cells, genes and pathways of activation differed. Gene mutation analysis revealed that TP53 is the most frequently mutated gene in ovarian cancer. We also predict small molecule drugs associated with CRGs and identify several potential candidates. VWF was identified as an oncogene in ovarian cancer, and the protein was expressed at significantly higher levels in tumor samples than in normal samples. The high‐score model of the cuproptosis cell signaling pathway was associated with the sensitivity of OC patients to immunotherapy. Conclusions Our study provides greater insight into the mechanisms of action of genes associated with the cuproptosis cell signaling pathway in ovarian cancer, highlighting potential targets for future therapeutic interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助pingan采纳,获得10
1秒前
SciGPT应助Mlwwq采纳,获得10
1秒前
2秒前
叁叁完成签到 ,获得积分10
2秒前
乐乐应助小明大明采纳,获得10
2秒前
欢乐发布了新的文献求助10
3秒前
静待花开发布了新的文献求助10
3秒前
1101592875发布了新的文献求助10
3秒前
aaaaaa完成签到,获得积分10
4秒前
4秒前
鱼叔完成签到,获得积分10
6秒前
策略完成签到 ,获得积分10
8秒前
领导范儿应助rainbow采纳,获得10
8秒前
yahosun发布了新的文献求助10
8秒前
8秒前
北儿116应助xuli21315采纳,获得30
8秒前
9秒前
ting完成签到,获得积分10
9秒前
10秒前
pingan完成签到,获得积分10
12秒前
sciscisci完成签到,获得积分10
12秒前
13秒前
JiaQi发布了新的文献求助10
14秒前
pingan发布了新的文献求助10
14秒前
jinyu完成签到 ,获得积分10
15秒前
15秒前
水123发布了新的文献求助10
15秒前
16秒前
HAo完成签到 ,获得积分10
17秒前
17秒前
17秒前
rainbow完成签到,获得积分10
17秒前
雪满头发布了新的文献求助10
18秒前
18秒前
SciGPT应助静待花开采纳,获得10
18秒前
vicky完成签到 ,获得积分10
18秒前
孤独怀柔发布了新的文献求助10
19秒前
lyncee发布了新的文献求助200
19秒前
yi完成签到,获得积分10
19秒前
Shadow完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297