Integrative analysis of cuproptosis‐associated genes for predicting immunotherapy response in single‐cell and multi‐cohort studies

生物 基因 癌变 小桶 计算生物学 卵巢癌 癌症研究 基因表达 癌症 生物信息学 遗传学 转录组
作者
Hua Li,Sheng Wang,Guangxiao Li,Jian Xiong,Lingshan Qin,Qirong Wen,Chaomin Yue
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:1
标识
DOI:10.1002/jgm.3600
摘要

Abstract Background The role of genes associated with the cuproptosis cell signaling pathway in prognosis and immunotherapy in ovarian cancer (OC) has been extensively investigated. In this study, we aimed to explore these mechanisms and establish a prognostic model for patients with OC using bioinformatics techniques. Methods We obtained the single cell sequencing data of ovarian cancer from the Gene Expression Omnibus (GEO) database and preprocessed the data. We analyzed a variety of factors including cuproptosis cell signal score, transcription factors, tumorigenesis and progression signals, gene set variation analysis (GSVA) and intercellular communication. Differential gene analysis was performed between groups with high and low cuproptosis cell signal scores, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Using bulk RNA sequencing data from The Cancer Genome Atlas, we used the least absolute shrinkage and selection operator (LASSO)‐Cox algorithm to develop cuproptosis cell signaling pathword‐related gene signatures and validated them with GEO ovarian cancer datasets. In addition, we analyzed the inherent rules of the genes involved in building the model using a variety of bioinformatics methods, including immune‐related analyses and single nucleotide polymorphisms. Molecular docking is used to screen potential therapeutic drugs. To confirm the analysis results, we performed various wet experiments such as western blot, cell counting kit 8 (CCK8) and clonogenesis tests to verify the role of the Von Willebrand Factor (VWF) gene in two ovarian cancer cell lines. Results Based on single‐cell data analysis, we found that endothelial cells and fibroblasts showed active substance synthesis and signaling pathway activation in OC, which further promoted immune cell suppression, cancer cell proliferation and metastasis. Ovarian cancer has a high tendency to metastasize, and cancer cells cooperate with other cells to promote disease progression. We developed a signature consisting of eight cuproptosis‐related genes (CRGs) (MAGEF1, DNPH1, RARRES1, NBL1, IFI27, VWF, OLFML3 and IGFBP4) that predicted overall survival in patients with ovarian cancer. The validity of this model is verified in an external GEO validation set. We observed active infiltrating states of immune cells in both the high‐ and low‐risk groups, although the specific cells, genes and pathways of activation differed. Gene mutation analysis revealed that TP53 is the most frequently mutated gene in ovarian cancer. We also predict small molecule drugs associated with CRGs and identify several potential candidates. VWF was identified as an oncogene in ovarian cancer, and the protein was expressed at significantly higher levels in tumor samples than in normal samples. The high‐score model of the cuproptosis cell signaling pathway was associated with the sensitivity of OC patients to immunotherapy. Conclusions Our study provides greater insight into the mechanisms of action of genes associated with the cuproptosis cell signaling pathway in ovarian cancer, highlighting potential targets for future therapeutic interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈嘻完成签到 ,获得积分10
1秒前
2秒前
鸠摩智完成签到,获得积分10
2秒前
3秒前
木木完成签到,获得积分10
4秒前
摆哥发布了新的文献求助10
7秒前
sunlight应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
简单生活完成签到 ,获得积分10
12秒前
KKKZ发布了新的文献求助10
13秒前
风雨霖霖完成签到 ,获得积分10
14秒前
mark2021完成签到,获得积分10
15秒前
爱你完成签到,获得积分10
16秒前
16秒前
日照金峰完成签到,获得积分10
17秒前
为霜完成签到 ,获得积分10
17秒前
yyd完成签到,获得积分10
21秒前
默默的成危完成签到,获得积分10
22秒前
离笼完成签到,获得积分10
22秒前
颜宇翔完成签到,获得积分10
22秒前
A晨完成签到 ,获得积分10
23秒前
阳光灿烂完成签到,获得积分10
29秒前
liushiyi发布了新的文献求助10
29秒前
Nariy完成签到,获得积分10
30秒前
xzxzxz完成签到,获得积分10
31秒前
32秒前
lizhoukan1完成签到,获得积分10
32秒前
KKKZ完成签到,获得积分10
34秒前
bear完成签到,获得积分10
34秒前
高兴的半仙完成签到,获得积分10
36秒前
litn完成签到 ,获得积分10
37秒前
余长青完成签到 ,获得积分10
37秒前
缥缈白翠完成签到,获得积分20
38秒前
明明完成签到 ,获得积分10
39秒前
Dawn完成签到,获得积分10
39秒前
淡淡的无敌完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565256
求助须知:如何正确求助?哪些是违规求助? 4650146
关于积分的说明 14689953
捐赠科研通 4591998
什么是DOI,文献DOI怎么找? 2519428
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159