Integrative analysis of cuproptosis‐associated genes for predicting immunotherapy response in single‐cell and multi‐cohort studies

生物 基因 癌变 小桶 计算生物学 卵巢癌 癌症研究 基因表达 癌症 生物信息学 遗传学 转录组
作者
Hua Li,Sheng Wang,Guangxiao Li,Jian Xiong,Lingshan Qin,Qirong Wen,Chaomin Yue
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:1
标识
DOI:10.1002/jgm.3600
摘要

Abstract Background The role of genes associated with the cuproptosis cell signaling pathway in prognosis and immunotherapy in ovarian cancer (OC) has been extensively investigated. In this study, we aimed to explore these mechanisms and establish a prognostic model for patients with OC using bioinformatics techniques. Methods We obtained the single cell sequencing data of ovarian cancer from the Gene Expression Omnibus (GEO) database and preprocessed the data. We analyzed a variety of factors including cuproptosis cell signal score, transcription factors, tumorigenesis and progression signals, gene set variation analysis (GSVA) and intercellular communication. Differential gene analysis was performed between groups with high and low cuproptosis cell signal scores, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Using bulk RNA sequencing data from The Cancer Genome Atlas, we used the least absolute shrinkage and selection operator (LASSO)‐Cox algorithm to develop cuproptosis cell signaling pathword‐related gene signatures and validated them with GEO ovarian cancer datasets. In addition, we analyzed the inherent rules of the genes involved in building the model using a variety of bioinformatics methods, including immune‐related analyses and single nucleotide polymorphisms. Molecular docking is used to screen potential therapeutic drugs. To confirm the analysis results, we performed various wet experiments such as western blot, cell counting kit 8 (CCK8) and clonogenesis tests to verify the role of the Von Willebrand Factor (VWF) gene in two ovarian cancer cell lines. Results Based on single‐cell data analysis, we found that endothelial cells and fibroblasts showed active substance synthesis and signaling pathway activation in OC, which further promoted immune cell suppression, cancer cell proliferation and metastasis. Ovarian cancer has a high tendency to metastasize, and cancer cells cooperate with other cells to promote disease progression. We developed a signature consisting of eight cuproptosis‐related genes (CRGs) (MAGEF1, DNPH1, RARRES1, NBL1, IFI27, VWF, OLFML3 and IGFBP4) that predicted overall survival in patients with ovarian cancer. The validity of this model is verified in an external GEO validation set. We observed active infiltrating states of immune cells in both the high‐ and low‐risk groups, although the specific cells, genes and pathways of activation differed. Gene mutation analysis revealed that TP53 is the most frequently mutated gene in ovarian cancer. We also predict small molecule drugs associated with CRGs and identify several potential candidates. VWF was identified as an oncogene in ovarian cancer, and the protein was expressed at significantly higher levels in tumor samples than in normal samples. The high‐score model of the cuproptosis cell signaling pathway was associated with the sensitivity of OC patients to immunotherapy. Conclusions Our study provides greater insight into the mechanisms of action of genes associated with the cuproptosis cell signaling pathway in ovarian cancer, highlighting potential targets for future therapeutic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打打应助无情的白桃采纳,获得10
刚刚
香蕉觅云应助与光同晨采纳,获得10
1秒前
1秒前
小蘑菇应助clm采纳,获得10
1秒前
yhnsag完成签到,获得积分10
1秒前
Lin完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
Rain发布了新的文献求助10
3秒前
butiflow完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
务实的唇膏完成签到,获得积分10
4秒前
Will完成签到,获得积分10
4秒前
4秒前
Micky完成签到,获得积分10
4秒前
ape发布了新的文献求助10
4秒前
十七发布了新的文献求助10
5秒前
gyt发布了新的文献求助10
5秒前
时尚战斗机完成签到,获得积分10
5秒前
5秒前
华安发布了新的文献求助30
6秒前
6秒前
迟大猫应助dpp采纳,获得10
6秒前
7秒前
astral完成签到,获得积分10
7秒前
科研通AI5应助HJJHJH采纳,获得30
8秒前
Isabel发布了新的文献求助10
8秒前
8秒前
桑姊发布了新的文献求助10
9秒前
9秒前
Cyrus2022完成签到,获得积分10
9秒前
古哉完成签到,获得积分10
9秒前
xiachengcs发布了新的文献求助30
10秒前
炙热芝发布了新的文献求助30
10秒前
Rain完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762