Integrative analysis of cuproptosis‐associated genes for predicting immunotherapy response in single‐cell and multi‐cohort studies

生物 基因 癌变 小桶 计算生物学 卵巢癌 癌症研究 基因表达 癌症 生物信息学 遗传学 转录组
作者
Hua Li,Sheng Wang,Guangxiao Li,Jian Xiong,Lingshan Qin,Qirong Wen,Chaomin Yue
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:1
标识
DOI:10.1002/jgm.3600
摘要

Abstract Background The role of genes associated with the cuproptosis cell signaling pathway in prognosis and immunotherapy in ovarian cancer (OC) has been extensively investigated. In this study, we aimed to explore these mechanisms and establish a prognostic model for patients with OC using bioinformatics techniques. Methods We obtained the single cell sequencing data of ovarian cancer from the Gene Expression Omnibus (GEO) database and preprocessed the data. We analyzed a variety of factors including cuproptosis cell signal score, transcription factors, tumorigenesis and progression signals, gene set variation analysis (GSVA) and intercellular communication. Differential gene analysis was performed between groups with high and low cuproptosis cell signal scores, as well as Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Using bulk RNA sequencing data from The Cancer Genome Atlas, we used the least absolute shrinkage and selection operator (LASSO)‐Cox algorithm to develop cuproptosis cell signaling pathword‐related gene signatures and validated them with GEO ovarian cancer datasets. In addition, we analyzed the inherent rules of the genes involved in building the model using a variety of bioinformatics methods, including immune‐related analyses and single nucleotide polymorphisms. Molecular docking is used to screen potential therapeutic drugs. To confirm the analysis results, we performed various wet experiments such as western blot, cell counting kit 8 (CCK8) and clonogenesis tests to verify the role of the Von Willebrand Factor (VWF) gene in two ovarian cancer cell lines. Results Based on single‐cell data analysis, we found that endothelial cells and fibroblasts showed active substance synthesis and signaling pathway activation in OC, which further promoted immune cell suppression, cancer cell proliferation and metastasis. Ovarian cancer has a high tendency to metastasize, and cancer cells cooperate with other cells to promote disease progression. We developed a signature consisting of eight cuproptosis‐related genes (CRGs) (MAGEF1, DNPH1, RARRES1, NBL1, IFI27, VWF, OLFML3 and IGFBP4) that predicted overall survival in patients with ovarian cancer. The validity of this model is verified in an external GEO validation set. We observed active infiltrating states of immune cells in both the high‐ and low‐risk groups, although the specific cells, genes and pathways of activation differed. Gene mutation analysis revealed that TP53 is the most frequently mutated gene in ovarian cancer. We also predict small molecule drugs associated with CRGs and identify several potential candidates. VWF was identified as an oncogene in ovarian cancer, and the protein was expressed at significantly higher levels in tumor samples than in normal samples. The high‐score model of the cuproptosis cell signaling pathway was associated with the sensitivity of OC patients to immunotherapy. Conclusions Our study provides greater insight into the mechanisms of action of genes associated with the cuproptosis cell signaling pathway in ovarian cancer, highlighting potential targets for future therapeutic interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cirilla发布了新的文献求助50
1秒前
2秒前
天天快乐应助贝贝托采纳,获得10
2秒前
2秒前
大模型应助时丶倾采纳,获得10
2秒前
李彪完成签到 ,获得积分0
2秒前
2秒前
完美世界应助liang2508采纳,获得10
4秒前
星辰大海应助甘123采纳,获得10
5秒前
小胭胭发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
酱紫完成签到 ,获得积分10
6秒前
英姑应助H1998采纳,获得10
6秒前
甜甜问薇发布了新的文献求助10
6秒前
浮游应助兴奋的傲易采纳,获得10
8秒前
小马甲应助insane采纳,获得10
8秒前
wanci应助liuxiaomeng采纳,获得10
10秒前
小毛驴完成签到,获得积分10
11秒前
感谢Rayyyyy转发科研通微信,获得积分50
11秒前
sunshineboy完成签到 ,获得积分10
12秒前
13秒前
感谢鲤鱼万声转发科研通微信,获得积分50
13秒前
insane完成签到,获得积分10
14秒前
14秒前
14秒前
drift完成签到,获得积分10
16秒前
16秒前
感谢茂茂转发科研通微信,获得积分50
17秒前
17秒前
小胭胭完成签到,获得积分10
19秒前
天天下雨完成签到 ,获得积分10
19秒前
于迪发布了新的文献求助10
20秒前
852应助4Xchua采纳,获得10
20秒前
时丶倾发布了新的文献求助10
20秒前
LALA发布了新的文献求助10
20秒前
21秒前
李爱国应助liang2508采纳,获得10
21秒前
芊芊墨客完成签到,获得积分10
21秒前
22秒前
谢老板完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350808
求助须知:如何正确求助?哪些是违规求助? 4484077
关于积分的说明 13958060
捐赠科研通 4383491
什么是DOI,文献DOI怎么找? 2408404
邀请新用户注册赠送积分活动 1401024
关于科研通互助平台的介绍 1374432