Two-Stage Edge-Side Fault Diagnosis Method Based on Double Knowledge Distillation

计算机科学 聚类分析 断层(地质) 加权 故障覆盖率 数据挖掘 陷入故障 GSM演进的增强数据速率 蒸馏 故障检测与隔离 人工智能 工程类 医学 化学 电气工程 有机化学 地震学 电子线路 执行机构 放射科 地质学
作者
Yang Yang,Yuhan Long,Yijing Lin,Zhipeng Gao,Lanlan Rui,Peng Yu
出处
期刊:Computers, materials & continua 卷期号:76 (3): 3623-3651
标识
DOI:10.32604/cmc.2023.040250
摘要

With the rapid development of the Internet of Things (IoT), the automation of edge-side equipment has emerged as a significant trend. The existing fault diagnosis methods have the characteristics of heavy computing and storage load, and most of them have computational redundancy, which is not suitable for deployment on edge devices with limited resources and capabilities. This paper proposes a novel two-stage edge-side fault diagnosis method based on double knowledge distillation. First, we offer a clustering-based self-knowledge distillation approach (Cluster KD), which takes the mean value of the sample diagnosis results, clusters them, and takes the clustering results as the terms of the loss function. It utilizes the correlations between faults of the same type to improve the accuracy of the teacher model, especially for fault categories with high similarity. Then, the double knowledge distillation framework uses ordinary knowledge distillation to build a lightweight model for edge-side deployment. We propose a two-stage edge-side fault diagnosis method (TSM) that separates fault detection and fault diagnosis into different stages: in the first stage, a fault detection model based on a denoising auto-encoder (DAE) is adopted to achieve fast fault responses; in the second stage, a diverse convolution model with variance weighting (DCMVW) is used to diagnose faults in detail, extracting features from micro and macro perspectives. Through comparison experiments conducted on two fault datasets, it is proven that the proposed method has high accuracy, low delays, and small computation, which is suitable for intelligent edge-side fault diagnosis. In addition, experiments show that our approach has a smooth training process and good balance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
简时发布了新的文献求助10
3秒前
Chen完成签到 ,获得积分10
3秒前
温暖的皮皮虾完成签到,获得积分10
3秒前
犹豫大侠完成签到,获得积分10
3秒前
fang完成签到,获得积分10
6秒前
hiha完成签到 ,获得积分10
7秒前
凌南风完成签到,获得积分10
7秒前
7秒前
淡定的思松完成签到 ,获得积分10
7秒前
嘻嘻哈哈完成签到,获得积分10
8秒前
勤劳寒烟完成签到,获得积分10
9秒前
9秒前
清脆如娆完成签到 ,获得积分10
12秒前
xiaoqi666完成签到 ,获得积分10
13秒前
learnerZ_2023完成签到,获得积分10
13秒前
yanyust发布了新的文献求助10
13秒前
潇洒冷菱完成签到,获得积分10
20秒前
Owen应助务实时光采纳,获得10
22秒前
舒心的幻天完成签到,获得积分10
26秒前
小蘑菇应助djy采纳,获得10
27秒前
99完成签到,获得积分10
27秒前
风中小懒虫完成签到,获得积分10
27秒前
江南之南完成签到 ,获得积分10
28秒前
29秒前
健忘数据线完成签到,获得积分10
31秒前
lzy完成签到,获得积分10
31秒前
31秒前
自觉的凛完成签到,获得积分10
33秒前
灯灯发布了新的文献求助10
33秒前
林洁佳完成签到,获得积分10
33秒前
香蕉书竹完成签到,获得积分10
34秒前
壮观傲霜完成签到 ,获得积分10
34秒前
调皮万宝路完成签到,获得积分10
35秒前
bxw发布了新的文献求助10
36秒前
37秒前
QIN完成签到,获得积分10
37秒前
38秒前
39秒前
Hello应助灯灯采纳,获得10
40秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709241
求助须知:如何正确求助?哪些是违规求助? 3257371
关于积分的说明 9904478
捐赠科研通 2970255
什么是DOI,文献DOI怎么找? 1629140
邀请新用户注册赠送积分活动 772448
科研通“疑难数据库(出版商)”最低求助积分说明 743806