Urban traffic volume estimation using intelligent transportation system crowdsourced data

计算机科学 加权 体积热力学 基本事实 数据挖掘 平均绝对百分比误差 人工智能 人工神经网络 机器学习 统计 数学 医学 物理 量子力学 放射科
作者
Liangyu Tay,Joanne Lim,Shiuan-Ni Liang,Kah Keong Chua,Yong Haur Tay
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107064-107064 被引量:1
标识
DOI:10.1016/j.engappai.2023.107064
摘要

Traffic volume is a crucial information for many different fields, such as city planner, logistic planning and more. However, installing sensors on each road to collect traffic volume data for the whole traffic network is impractical due to high cost and human labour. Most recent studies implement machine learning, mathematical and statistical methods to learn the behaviour of traffic volume. However, the randomness of traffic volume can hardly be defined by equations or statistical models which leads to the proposed machine learning model. This paper proposed a novel spatial prediction to fill up the traffic volume of a whole network with an estimated 10% of ground truth data. To make up for the lack of data, a spatial-temporal weightage is assigned to each road before fitting the training sample into a tree ensemble model to perform a prediction of the connecting roads. The weightage is first computed using the 10% ground truth data and then the weightage is spread to connecting roads via an innovative repetitive breadth-first search (BFS) method that capture the spatial correlation of a traffic network. Various experiments were conducted to assess the significance of spatial weighting and it was observed that incorporating the weighting resulted in a 1.69% improvement in the Mean Absolute Percentage Error (MAPE). The temporal relationship can be learnt from the trend of hourly traffic data for every day of the week. The proposed model achieved an average percentage error of 2.63% with reduced average percentage error by 95% compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
直率的勒完成签到,获得积分10
3秒前
zhang完成签到,获得积分10
4秒前
5秒前
愉快的哈密瓜完成签到,获得积分10
5秒前
bkagyin应助hhh采纳,获得10
6秒前
酷波er应助Devil采纳,获得10
6秒前
朴实芒果发布了新的文献求助10
7秒前
7秒前
苏青舟完成签到,获得积分10
8秒前
Zhangzhang完成签到,获得积分10
9秒前
9秒前
涂涂完成签到,获得积分10
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
快乐大炮发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
16秒前
苏苏发布了新的文献求助10
17秒前
伶俐的以晴完成签到,获得积分10
17秒前
濮阳冰海完成签到 ,获得积分10
17秒前
Fx发布了新的文献求助10
17秒前
个性的紫菜应助charmer采纳,获得50
18秒前
18秒前
18秒前
大胆易巧完成签到 ,获得积分10
18秒前
20秒前
21秒前
大个应助SCI采纳,获得10
21秒前
朴实芒果完成签到,获得积分10
21秒前
搞怪书兰发布了新的文献求助30
21秒前
深情安青应助阳12123采纳,获得10
21秒前
22秒前
24秒前
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140690
求助须知:如何正确求助?哪些是违规求助? 2791543
关于积分的说明 7799499
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302159
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194