Urban traffic volume estimation using intelligent transportation system crowdsourced data

计算机科学 加权 体积热力学 基本事实 数据挖掘 平均绝对百分比误差 人工智能 人工神经网络 机器学习 统计 数学 医学 物理 量子力学 放射科
作者
Liangyu Tay,Joanne Lim,Shiuan-Ni Liang,Kah Keong Chua,Yong Haur Tay
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 107064-107064 被引量:1
标识
DOI:10.1016/j.engappai.2023.107064
摘要

Traffic volume is a crucial information for many different fields, such as city planner, logistic planning and more. However, installing sensors on each road to collect traffic volume data for the whole traffic network is impractical due to high cost and human labour. Most recent studies implement machine learning, mathematical and statistical methods to learn the behaviour of traffic volume. However, the randomness of traffic volume can hardly be defined by equations or statistical models which leads to the proposed machine learning model. This paper proposed a novel spatial prediction to fill up the traffic volume of a whole network with an estimated 10% of ground truth data. To make up for the lack of data, a spatial-temporal weightage is assigned to each road before fitting the training sample into a tree ensemble model to perform a prediction of the connecting roads. The weightage is first computed using the 10% ground truth data and then the weightage is spread to connecting roads via an innovative repetitive breadth-first search (BFS) method that capture the spatial correlation of a traffic network. Various experiments were conducted to assess the significance of spatial weighting and it was observed that incorporating the weighting resulted in a 1.69% improvement in the Mean Absolute Percentage Error (MAPE). The temporal relationship can be learnt from the trend of hourly traffic data for every day of the week. The proposed model achieved an average percentage error of 2.63% with reduced average percentage error by 95% compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炎炎夏无声完成签到 ,获得积分10
刚刚
HH完成签到,获得积分10
刚刚
痞卡丘发布了新的文献求助10
刚刚
刚刚
AAAsun完成签到,获得积分10
刚刚
FashionBoy应助k123456采纳,获得10
刚刚
Joey发布了新的文献求助10
刚刚
orixero应助好运采纳,获得10
1秒前
张医生完成签到,获得积分20
1秒前
1秒前
wyw完成签到,获得积分10
2秒前
爆米花应助金不换采纳,获得10
2秒前
我是老大应助蔬菜人采纳,获得10
2秒前
任性访风完成签到,获得积分10
3秒前
喜多米430完成签到,获得积分10
3秒前
Zhixia完成签到,获得积分20
4秒前
畅快的寄松完成签到,获得积分10
4秒前
在水一方应助张医生采纳,获得10
4秒前
4秒前
雪莉酒完成签到,获得积分10
4秒前
顾矜应助wst1988采纳,获得10
5秒前
酷炫的飞薇完成签到,获得积分10
5秒前
客官们帮帮忙完成签到,获得积分10
5秒前
迅速向日葵应助龙舞星采纳,获得10
5秒前
5秒前
7秒前
南宫映榕完成签到,获得积分10
7秒前
peiqi佩奇完成签到,获得积分10
7秒前
FashionBoy应助3131879775采纳,获得10
7秒前
龙虾发票完成签到,获得积分10
7秒前
zty完成签到,获得积分10
7秒前
8秒前
ZZZ完成签到,获得积分10
8秒前
科研老白完成签到,获得积分10
8秒前
8秒前
Focus完成签到,获得积分20
8秒前
孟严青完成签到,获得积分0
9秒前
量子星尘发布了新的文献求助10
9秒前
合适台灯发布了新的文献求助30
9秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479