Exploring the mechanism of ellagic acid against gastric cancer based on bioinformatics analysis and network pharmacology

小桶 计算生物学 生物 基因 生物信息学 遗传学 基因本体论 基因表达
作者
Zhiyao Liu,Hailiang Huang,Ying Yu,Lingling Li,Xin Shi,Fangqi Wang
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:27 (23): 3878-3896 被引量:3
标识
DOI:10.1111/jcmm.17967
摘要

Abstract Ellagic acid (EA) is a natural polyphenolic compound. Recent studies have shown that EA has potential anticancer properties against gastric cancer (GC). This study aims to reveal the potential targets and mechanisms of EA against GC. This study adopted methods of bioinformatics analysis and network pharmacology, including the weighted gene co‐expression network analysis (WGCNA), construction of protein–protein interaction (PPI) network, receiver operating characteristic (ROC) and Kaplan–Meier (KM) survival curve analysis, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, molecular docking and molecular dynamics simulations (MDS). A total of 540 EA targets were obtained. Through WGCNA, we obtained a total of 2914 GC clinical module genes, combined with the disease database for screening, a total of 606 GC‐related targets and 79 intersection targets of EA and GC were obtained by constructing Venn diagram. PPI network was constructed to identify 14 core candidate targets; TP53, JUN, CASP3, HSP90AA1, VEGFA, HRAS, CDH1, MAPK3, CDKN1A, SRC, CYCS, BCL2L1 and CDK4 were identified as the key targets of EA regulation of GC by ROC and KM curve analysis. The enrichment analysis of GO and KEGG pathways of key targets was performed, and they were mainly enriched in p53 signalling pathway, PI3K‐Akt signalling pathway. The results of molecular docking and MDS showed that EA could effectively bind to 13 key targets to form stable protein–ligand complexes. This study revealed the key targets and molecular mechanisms of EA against GC and provided a theoretical basis for further study of the pharmacological mechanism of EA against GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yan关闭了yan文献求助
1秒前
粥喝不喝完成签到,获得积分10
1秒前
1秒前
辛儿的毅完成签到,获得积分20
1秒前
王女士发布了新的文献求助10
2秒前
萝卜发布了新的文献求助10
3秒前
3秒前
林八八发布了新的文献求助10
3秒前
酷波er应助audodo采纳,获得10
4秒前
科目三应助幽默尔蓝采纳,获得10
4秒前
啊脏zz完成签到,获得积分10
4秒前
李浩能完成签到,获得积分10
5秒前
百里烬言完成签到,获得积分10
5秒前
5秒前
Lucas应助沐雨清风采纳,获得10
5秒前
5秒前
Hello应助务实砖头采纳,获得10
6秒前
111发布了新的文献求助10
6秒前
清辉夜凝完成签到,获得积分10
6秒前
sly发布了新的文献求助10
6秒前
7秒前
7秒前
谯殿艺完成签到,获得积分10
8秒前
8秒前
周小台完成签到 ,获得积分10
9秒前
党文英完成签到,获得积分10
9秒前
9秒前
llc完成签到 ,获得积分10
9秒前
9秒前
nancy完成签到,获得积分10
9秒前
10秒前
10秒前
第八维发布了新的文献求助30
10秒前
ZWQ发布了新的文献求助10
11秒前
霸气的寒蕾完成签到,获得积分10
11秒前
彭于晏应助清辉夜凝采纳,获得10
11秒前
思源应助大福采纳,获得10
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061