Exploring the mechanism of ellagic acid against gastric cancer based on bioinformatics analysis and network pharmacology

小桶 计算生物学 生物 基因 生物信息学 遗传学 基因本体论 基因表达
作者
Zhiyao Liu,Hailiang Huang,Ying Yu,Lingling Li,Xin Shi,Fangqi Wang
出处
期刊:Journal of Cellular and Molecular Medicine [Wiley]
卷期号:27 (23): 3878-3896 被引量:3
标识
DOI:10.1111/jcmm.17967
摘要

Abstract Ellagic acid (EA) is a natural polyphenolic compound. Recent studies have shown that EA has potential anticancer properties against gastric cancer (GC). This study aims to reveal the potential targets and mechanisms of EA against GC. This study adopted methods of bioinformatics analysis and network pharmacology, including the weighted gene co‐expression network analysis (WGCNA), construction of protein–protein interaction (PPI) network, receiver operating characteristic (ROC) and Kaplan–Meier (KM) survival curve analysis, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, molecular docking and molecular dynamics simulations (MDS). A total of 540 EA targets were obtained. Through WGCNA, we obtained a total of 2914 GC clinical module genes, combined with the disease database for screening, a total of 606 GC‐related targets and 79 intersection targets of EA and GC were obtained by constructing Venn diagram. PPI network was constructed to identify 14 core candidate targets; TP53, JUN, CASP3, HSP90AA1, VEGFA, HRAS, CDH1, MAPK3, CDKN1A, SRC, CYCS, BCL2L1 and CDK4 were identified as the key targets of EA regulation of GC by ROC and KM curve analysis. The enrichment analysis of GO and KEGG pathways of key targets was performed, and they were mainly enriched in p53 signalling pathway, PI3K‐Akt signalling pathway. The results of molecular docking and MDS showed that EA could effectively bind to 13 key targets to form stable protein–ligand complexes. This study revealed the key targets and molecular mechanisms of EA against GC and provided a theoretical basis for further study of the pharmacological mechanism of EA against GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助Hu111采纳,获得10
1秒前
khaosyi完成签到 ,获得积分10
2秒前
哇哈哈完成签到,获得积分10
3秒前
3秒前
buno应助啦啦采纳,获得10
4秒前
Mike完成签到,获得积分10
4秒前
4秒前
顾矜应助chen采纳,获得10
5秒前
科研通AI5应助小王采纳,获得10
5秒前
GGBond完成签到,获得积分10
5秒前
孔雀翎发布了新的文献求助10
5秒前
寂寞的灵完成签到,获得积分10
6秒前
后知后觉发布了新的文献求助10
6秒前
百十余完成签到,获得积分10
6秒前
6秒前
6秒前
Zhaorf完成签到,获得积分10
7秒前
沉默紫槐完成签到,获得积分10
7秒前
深情安青应助易达采纳,获得10
7秒前
默默海露发布了新的文献求助10
9秒前
10秒前
flyfish完成签到,获得积分10
10秒前
36456657应助chen采纳,获得10
10秒前
每念至此完成签到,获得积分10
11秒前
大力黑米完成签到 ,获得积分10
12秒前
123发布了新的文献求助30
12秒前
搜集达人应助gaos采纳,获得10
12秒前
hengy发布了新的文献求助10
12秒前
杳鸢应助Xenia采纳,获得10
13秒前
kekekelili完成签到,获得积分10
14秒前
14秒前
zhonghbush发布了新的文献求助10
15秒前
reck发布了新的文献求助10
15秒前
15秒前
15秒前
kimcandy完成签到,获得积分10
15秒前
华仔应助任品贤采纳,获得10
16秒前
无花果应助急雪回风采纳,获得10
16秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672