MCSTransWnet: A new deep learning process for postoperative corneal topography prediction based on raw multimodal data from the Pentacam HR system

鉴别器 人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 发电机(电路理论) 预处理器 计算机视觉 量子力学 电信 探测器 物理 功率(物理)
作者
Nan Chen,Zhe Zhang,Jinfeng Pan,Xiaona Li,Weiyi Chen,Guanghua Zhang,Weihua Yang
出处
期刊:Medicine in novel technology and devices [Elsevier BV]
卷期号:: 100267-100267
标识
DOI:10.1016/j.medntd.2023.100267
摘要

This work provides a new multimodal fusion generative adversarial net (GAN) model, Multiple Conditions Transform W-net (MCSTransWnet), which primarily uses femtosecond laser arcuate keratotomy surgical parameters and preoperative corneal topography to predict postoperative corneal topography in astigmatism-corrected patients. The MCSTransWnet model comprises a generator and a discriminator, and the generator is composed of two sub-generators. The first sub-generator extracts features using the U-net model, vision transform (ViT) and a multi-parameter conditional module branch. The second sub-generator uses a U-net network for further image denoising. The discriminator uses the pixel discriminator in Pix2Pix. Currently, most GAN models are convolutional neural networks; however, due to their feature extraction locality, it is difficult to comprehend the relationships among global features. Thus, we added a vision Transform network as the model branch to extract the global features. It is normally difficult to train the transformer, and image noise and geometric information loss are likely. Hence, we adopted the standard U-net fusion scheme and transform network as the generator, so that global features, local features, and rich image details could be obtained simultaneously. Our experimental results clearly demonstrate that MCSTransWnet successfully predicts postoperative corneal topographies (structural similarity = 0.765, peak signal-to-noise ratio = 16.012, and Fréchet inception distance = 9.264). Using this technique to obtain the rough shape of the postoperative corneal topography in advance gives clinicians more references and guides changes to surgical planning and improves the success rate of surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
wangshuo1218发布了新的文献求助10
1秒前
1秒前
喵喵发布了新的文献求助20
1秒前
飞云发布了新的文献求助10
1秒前
充电宝应助春风何向晚采纳,获得10
2秒前
2秒前
慕青应助义气鲂采纳,获得10
2秒前
3秒前
jiaxin发布了新的文献求助10
3秒前
yangyang2021完成签到,获得积分10
4秒前
包包琪发布了新的文献求助10
4秒前
4秒前
4秒前
elliot完成签到,获得积分10
4秒前
4秒前
5秒前
liuyc完成签到,获得积分10
5秒前
沉默安波完成签到,获得积分10
5秒前
5秒前
jsinm-thyroid发布了新的文献求助10
6秒前
青儿发布了新的文献求助30
6秒前
韦颖完成签到,获得积分20
7秒前
徐逊发布了新的文献求助10
7秒前
7秒前
无极完成签到 ,获得积分10
7秒前
斯文败类应助huang采纳,获得20
7秒前
倾听昆语完成签到 ,获得积分10
7秒前
8秒前
大模型应助糖果采纳,获得10
8秒前
酷波er应助qianlan采纳,获得10
8秒前
8秒前
催化打工人完成签到,获得积分10
9秒前
MMP完成签到,获得积分10
9秒前
啊娴子发布了新的文献求助30
9秒前
甜美幻桃发布了新的文献求助10
9秒前
balabalabala发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969335
求助须知:如何正确求助?哪些是违规求助? 3514162
关于积分的说明 11172430
捐赠科研通 3249456
什么是DOI,文献DOI怎么找? 1794853
邀请新用户注册赠送积分活动 875437
科研通“疑难数据库(出版商)”最低求助积分说明 804809