MCSTransWnet: A new deep learning process for postoperative corneal topography prediction based on raw multimodal data from the Pentacam HR system

鉴别器 人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 发电机(电路理论) 预处理器 计算机视觉 量子力学 电信 探测器 物理 功率(物理)
作者
Nan Chen,Zhe Zhang,Jinfeng Pan,Xiaona Li,Weiyi Chen,Guanghua Zhang,Weihua Yang
出处
期刊:Medicine in novel technology and devices [Elsevier]
卷期号:: 100267-100267
标识
DOI:10.1016/j.medntd.2023.100267
摘要

This work provides a new multimodal fusion generative adversarial net (GAN) model, Multiple Conditions Transform W-net (MCSTransWnet), which primarily uses femtosecond laser arcuate keratotomy surgical parameters and preoperative corneal topography to predict postoperative corneal topography in astigmatism-corrected patients. The MCSTransWnet model comprises a generator and a discriminator, and the generator is composed of two sub-generators. The first sub-generator extracts features using the U-net model, vision transform (ViT) and a multi-parameter conditional module branch. The second sub-generator uses a U-net network for further image denoising. The discriminator uses the pixel discriminator in Pix2Pix. Currently, most GAN models are convolutional neural networks; however, due to their feature extraction locality, it is difficult to comprehend the relationships among global features. Thus, we added a vision Transform network as the model branch to extract the global features. It is normally difficult to train the transformer, and image noise and geometric information loss are likely. Hence, we adopted the standard U-net fusion scheme and transform network as the generator, so that global features, local features, and rich image details could be obtained simultaneously. Our experimental results clearly demonstrate that MCSTransWnet successfully predicts postoperative corneal topographies (structural similarity = 0.765, peak signal-to-noise ratio = 16.012, and Fréchet inception distance = 9.264). Using this technique to obtain the rough shape of the postoperative corneal topography in advance gives clinicians more references and guides changes to surgical planning and improves the success rate of surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
温暖的碧蓉完成签到,获得积分10
2秒前
liang发布了新的文献求助10
4秒前
Huimin发布了新的文献求助10
6秒前
asd应助一碗云吞面采纳,获得30
6秒前
TobyZhou发布了新的文献求助10
6秒前
一丁雨发布了新的文献求助10
7秒前
随心随意完成签到,获得积分10
8秒前
9秒前
FashionBoy应助wvwvwv采纳,获得10
11秒前
酷波er应助jiajia666采纳,获得10
11秒前
希望天下0贩的0应助苏栀采纳,获得10
12秒前
12秒前
斯文败类应助liang采纳,获得10
13秒前
隐形曼青应助咚咚采纳,获得10
13秒前
深情安青应助zry采纳,获得10
13秒前
14秒前
reset完成签到 ,获得积分10
15秒前
LOST发布了新的文献求助10
18秒前
灿华完成签到 ,获得积分10
18秒前
火星上的映安完成签到 ,获得积分10
18秒前
19秒前
TobyZhou发布了新的文献求助10
19秒前
帅酷的小刺猬完成签到,获得积分20
20秒前
排列组合式文章完成签到,获得积分10
21秒前
桐桐应助lyang采纳,获得10
22秒前
22秒前
23秒前
25秒前
傅诗琦发布了新的文献求助10
25秒前
mzhang2完成签到 ,获得积分10
26秒前
26秒前
Will发布了新的文献求助10
27秒前
27秒前
515yanke发布了新的文献求助10
31秒前
喜哈哈发布了新的文献求助10
32秒前
33秒前
33秒前
Xiaoxiannv完成签到,获得积分10
34秒前
一丁雨发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291884
求助须知:如何正确求助?哪些是违规求助? 2928343
关于积分的说明 8436625
捐赠科研通 2600302
什么是DOI,文献DOI怎么找? 1419018
科研通“疑难数据库(出版商)”最低求助积分说明 660203
邀请新用户注册赠送积分活动 642834