MCSTransWnet: A new deep learning process for postoperative corneal topography prediction based on raw multimodal data from the Pentacam HR system

鉴别器 人工智能 计算机科学 卷积神经网络 深度学习 模式识别(心理学) 发电机(电路理论) 预处理器 计算机视觉 电信 功率(物理) 物理 量子力学 探测器
作者
Nan Chen,Zhe Zhang,Jinfeng Pan,Xiaona Li,Weiyi Chen,Guanghua Zhang,Weihua Yang
出处
期刊:Medicine in novel technology and devices [Elsevier BV]
卷期号:: 100267-100267
标识
DOI:10.1016/j.medntd.2023.100267
摘要

This work provides a new multimodal fusion generative adversarial net (GAN) model, Multiple Conditions Transform W-net (MCSTransWnet), which primarily uses femtosecond laser arcuate keratotomy surgical parameters and preoperative corneal topography to predict postoperative corneal topography in astigmatism-corrected patients. The MCSTransWnet model comprises a generator and a discriminator, and the generator is composed of two sub-generators. The first sub-generator extracts features using the U-net model, vision transform (ViT) and a multi-parameter conditional module branch. The second sub-generator uses a U-net network for further image denoising. The discriminator uses the pixel discriminator in Pix2Pix. Currently, most GAN models are convolutional neural networks; however, due to their feature extraction locality, it is difficult to comprehend the relationships among global features. Thus, we added a vision Transform network as the model branch to extract the global features. It is normally difficult to train the transformer, and image noise and geometric information loss are likely. Hence, we adopted the standard U-net fusion scheme and transform network as the generator, so that global features, local features, and rich image details could be obtained simultaneously. Our experimental results clearly demonstrate that MCSTransWnet successfully predicts postoperative corneal topographies (structural similarity = 0.765, peak signal-to-noise ratio = 16.012, and Fréchet inception distance = 9.264). Using this technique to obtain the rough shape of the postoperative corneal topography in advance gives clinicians more references and guides changes to surgical planning and improves the success rate of surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助一年5篇采纳,获得10
1秒前
1秒前
自觉水绿发布了新的文献求助10
1秒前
雨寒完成签到,获得积分10
2秒前
xixi发布了新的文献求助10
2秒前
赵科翊完成签到,获得积分10
2秒前
Breathe完成签到 ,获得积分10
3秒前
Jessie完成签到,获得积分10
3秒前
liucheng发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
HI发布了新的文献求助10
5秒前
5秒前
qianqina完成签到,获得积分10
5秒前
好好好完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
乔乔完成签到,获得积分10
6秒前
6秒前
在水一方应助一群牛采纳,获得10
7秒前
7秒前
shiqiang mu应助雨寒采纳,获得10
7秒前
8秒前
未知发布了新的文献求助10
8秒前
8秒前
高媛完成签到,获得积分20
9秒前
yelaikuhun74发布了新的文献求助10
9秒前
蒋一发布了新的文献求助10
10秒前
qianqina发布了新的文献求助10
10秒前
10秒前
qise应助管夜白采纳,获得10
10秒前
乔呀完成签到,获得积分10
10秒前
xixi完成签到,获得积分20
11秒前
11秒前
Vivian完成签到,获得积分10
11秒前
11秒前
班玮越发布了新的文献求助10
11秒前
要增肥的樱完成签到,获得积分10
12秒前
科研通AI5应助雨碎寒江采纳,获得10
12秒前
liucheng完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403