亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

COPS: An improved information retrieval-based bug localization technique using context-aware program simplification

计算机科学 调试 Python(编程语言) Java 跟踪(心理语言学) 语句(逻辑) 背景(考古学) 程序设计语言 软件错误 情报检索 软件 数据挖掘 人工智能 法学 古生物学 哲学 语言学 政治学 生物
作者
Yilin Yang,Ziyuan Wang,Chunrong Fang,Baowen Xu
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:207: 111868-111868
标识
DOI:10.1016/j.jss.2023.111868
摘要

Information Retrieval Based Bug Localization (IRBL) techniques are well suited for large-scale software debugging with fewer external dependencies and lower execution costs. However, existing IRBL techniques have several challenges, including localization granularity and applicability. First, existing IRBL techniques have not yet achieved statement-level bug localization. Second, almost all studies are limited to Java-based projects, while their effectiveness for other popular programming languages (e.g., Python) is unknown. The reason for these deficiencies is that existing IRBL techniques mainly rely on conventional NLP techniques to analyze the bug reports and have not yet fully utilized the stack traces attached to the bug reports. To improve the IRBL technique, we propose a context-aware program simplification technique – COPS – that can localize defective statements in suspicious files by analyzing the stack traces in bug reports, enabling statement-level bug localization for Python-based projects. Our experiment is based on 948 bug reports, and the results show that COPS can effectively localize buggy statements. First, compared to the original stack traces, Top@10 is improved by 102.6%, MAP@10 by 56.2%, and MRR@10 by 95.6%. We found that actual buggy code entities are more likely to appear in the first five frames of the stack trace. Second, COPS can achieve equally good localization performance compared to state-of-the-art statement-level bug localization techniques and achieve 92% buggy statement coverage with a full-scope search. Finally, experiments found that the stack trace's first two-thirds of information is more conducive to localizing buggy statements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
xiaochao完成签到,获得积分10
6秒前
杨柳依依完成签到,获得积分10
14秒前
GingerF应助FIN采纳,获得50
22秒前
科研通AI5应助无风采纳,获得10
22秒前
movoandy完成签到,获得积分10
25秒前
29秒前
石中酒完成签到 ,获得积分10
44秒前
49秒前
大个应助LULU采纳,获得10
56秒前
courage完成签到,获得积分10
1分钟前
1分钟前
山竹派派完成签到 ,获得积分10
1分钟前
有点鸭梨呀完成签到 ,获得积分10
1分钟前
科研通AI5应助Lalala采纳,获得10
1分钟前
无花果应助xin采纳,获得10
1分钟前
王鑫完成签到 ,获得积分10
1分钟前
俭朴夜雪完成签到,获得积分10
1分钟前
1分钟前
Ava应助Lalala采纳,获得30
1分钟前
ZR发布了新的文献求助10
1分钟前
黄景滨完成签到 ,获得积分10
1分钟前
Honor完成签到 ,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
卖辣条的小浣熊完成签到,获得积分10
1分钟前
物理大诗完成签到 ,获得积分10
1分钟前
1分钟前
我是老大应助ZR采纳,获得10
1分钟前
友好胜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Lalala发布了新的文献求助30
1分钟前
1分钟前
机智的天宇完成签到 ,获得积分10
1分钟前
谈理想发布了新的文献求助20
2分钟前
LMW应助rr123456采纳,获得10
2分钟前
Lalala发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625762
求助须知:如何正确求助?哪些是违规求助? 4024874
关于积分的说明 12458015
捐赠科研通 3709929
什么是DOI,文献DOI怎么找? 2046390
邀请新用户注册赠送积分活动 1078270
科研通“疑难数据库(出版商)”最低求助积分说明 960772