COPS: An improved information retrieval-based bug localization technique using context-aware program simplification

计算机科学 调试 Python(编程语言) Java 跟踪(心理语言学) 语句(逻辑) 背景(考古学) 程序设计语言 软件错误 情报检索 软件 数据挖掘 人工智能 古生物学 法学 哲学 生物 语言学 政治学
作者
Yilin Yang,Ziyuan Wang,Chunrong Fang,Baowen Xu
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:207: 111868-111868
标识
DOI:10.1016/j.jss.2023.111868
摘要

Information Retrieval Based Bug Localization (IRBL) techniques are well suited for large-scale software debugging with fewer external dependencies and lower execution costs. However, existing IRBL techniques have several challenges, including localization granularity and applicability. First, existing IRBL techniques have not yet achieved statement-level bug localization. Second, almost all studies are limited to Java-based projects, while their effectiveness for other popular programming languages (e.g., Python) is unknown. The reason for these deficiencies is that existing IRBL techniques mainly rely on conventional NLP techniques to analyze the bug reports and have not yet fully utilized the stack traces attached to the bug reports. To improve the IRBL technique, we propose a context-aware program simplification technique – COPS – that can localize defective statements in suspicious files by analyzing the stack traces in bug reports, enabling statement-level bug localization for Python-based projects. Our experiment is based on 948 bug reports, and the results show that COPS can effectively localize buggy statements. First, compared to the original stack traces, Top@10 is improved by 102.6%, MAP@10 by 56.2%, and MRR@10 by 95.6%. We found that actual buggy code entities are more likely to appear in the first five frames of the stack trace. Second, COPS can achieve equally good localization performance compared to state-of-the-art statement-level bug localization techniques and achieve 92% buggy statement coverage with a full-scope search. Finally, experiments found that the stack trace's first two-thirds of information is more conducive to localizing buggy statements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的夜香完成签到 ,获得积分10
刚刚
魏莱完成签到,获得积分10
1秒前
1秒前
蒸馏水完成签到,获得积分10
2秒前
陈某人发布了新的文献求助10
2秒前
yinhe完成签到,获得积分10
2秒前
husy完成签到,获得积分10
3秒前
3秒前
戌博完成签到,获得积分10
4秒前
竹子发布了新的文献求助10
5秒前
彭于晏应助cb采纳,获得10
5秒前
葫芦娃完成签到,获得积分10
6秒前
Jasper应助iShine采纳,获得10
6秒前
lelele发布了新的文献求助10
7秒前
7秒前
8秒前
dongdoctor完成签到 ,获得积分10
8秒前
魏莱发布了新的文献求助10
8秒前
Ulrica完成签到,获得积分10
8秒前
CipherSage应助包容追命采纳,获得10
8秒前
owldan完成签到 ,获得积分10
10秒前
一直向前完成签到,获得积分10
10秒前
舒服的映安完成签到 ,获得积分10
10秒前
lmh011115发布了新的文献求助10
11秒前
12秒前
一直向前发布了新的文献求助10
12秒前
End完成签到 ,获得积分10
13秒前
沉静的红酒完成签到,获得积分10
14秒前
yzxzdm完成签到 ,获得积分10
14秒前
Yara.H完成签到 ,获得积分10
14秒前
Meng完成签到,获得积分10
15秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
包容追命发布了新的文献求助10
21秒前
21秒前
梦鱼完成签到,获得积分10
22秒前
小林不熬夜完成签到,获得积分10
22秒前
玛卡巴卡完成签到,获得积分10
23秒前
希尔伯特发布了新的文献求助10
25秒前
Jasper应助dailyyang采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048