COPS: An improved information retrieval-based bug localization technique using context-aware program simplification

计算机科学 调试 Python(编程语言) Java 跟踪(心理语言学) 语句(逻辑) 背景(考古学) 程序设计语言 软件错误 情报检索 软件 数据挖掘 人工智能 法学 古生物学 哲学 语言学 政治学 生物
作者
Yilin Yang,Ziyuan Wang,Chunrong Fang,Baowen Xu
出处
期刊:Journal of Systems and Software [Elsevier]
卷期号:207: 111868-111868
标识
DOI:10.1016/j.jss.2023.111868
摘要

Information Retrieval Based Bug Localization (IRBL) techniques are well suited for large-scale software debugging with fewer external dependencies and lower execution costs. However, existing IRBL techniques have several challenges, including localization granularity and applicability. First, existing IRBL techniques have not yet achieved statement-level bug localization. Second, almost all studies are limited to Java-based projects, while their effectiveness for other popular programming languages (e.g., Python) is unknown. The reason for these deficiencies is that existing IRBL techniques mainly rely on conventional NLP techniques to analyze the bug reports and have not yet fully utilized the stack traces attached to the bug reports. To improve the IRBL technique, we propose a context-aware program simplification technique – COPS – that can localize defective statements in suspicious files by analyzing the stack traces in bug reports, enabling statement-level bug localization for Python-based projects. Our experiment is based on 948 bug reports, and the results show that COPS can effectively localize buggy statements. First, compared to the original stack traces, Top@10 is improved by 102.6%, MAP@10 by 56.2%, and MRR@10 by 95.6%. We found that actual buggy code entities are more likely to appear in the first five frames of the stack trace. Second, COPS can achieve equally good localization performance compared to state-of-the-art statement-level bug localization techniques and achieve 92% buggy statement coverage with a full-scope search. Finally, experiments found that the stack trace's first two-thirds of information is more conducive to localizing buggy statements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Max完成签到,获得积分10
1秒前
拼搏的土豆完成签到,获得积分10
1秒前
lsq108发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
aaronzhu1995完成签到,获得积分10
4秒前
5秒前
msn00完成签到,获得积分10
6秒前
7秒前
shisui发布了新的文献求助30
7秒前
vitamin发布了新的文献求助10
8秒前
cola完成签到 ,获得积分10
8秒前
jpc发布了新的文献求助10
9秒前
单薄遥完成签到 ,获得积分10
9秒前
善学以致用应助熊啊熊采纳,获得10
10秒前
11秒前
12秒前
洪汉完成签到,获得积分10
12秒前
ableyy发布了新的文献求助10
12秒前
默默寇给小墨的求助进行了留言
13秒前
viauue9发布了新的文献求助10
13秒前
cassiecx发布了新的文献求助20
14秒前
15秒前
所所应助viauue9采纳,获得10
17秒前
pluto应助明亮的忆灵采纳,获得10
19秒前
19秒前
20秒前
熊啊熊完成签到,获得积分10
20秒前
重要问旋完成签到,获得积分10
20秒前
22秒前
22秒前
cenzy完成签到,获得积分10
22秒前
23秒前
24秒前
研友_Z6k7B8发布了新的文献求助10
25秒前
26秒前
PGS发布了新的文献求助10
26秒前
29秒前
木子完成签到 ,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136060
求助须知:如何正确求助?哪些是违规求助? 2786881
关于积分的说明 7779829
捐赠科研通 2443052
什么是DOI,文献DOI怎么找? 1298859
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870