COPS: An improved information retrieval-based bug localization technique using context-aware program simplification

计算机科学 调试 Python(编程语言) Java 跟踪(心理语言学) 语句(逻辑) 背景(考古学) 程序设计语言 软件错误 情报检索 软件 数据挖掘 人工智能 法学 古生物学 哲学 语言学 政治学 生物
作者
Yilin Yang,Ziyuan Wang,Chunrong Fang,Baowen Xu
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:207: 111868-111868
标识
DOI:10.1016/j.jss.2023.111868
摘要

Information Retrieval Based Bug Localization (IRBL) techniques are well suited for large-scale software debugging with fewer external dependencies and lower execution costs. However, existing IRBL techniques have several challenges, including localization granularity and applicability. First, existing IRBL techniques have not yet achieved statement-level bug localization. Second, almost all studies are limited to Java-based projects, while their effectiveness for other popular programming languages (e.g., Python) is unknown. The reason for these deficiencies is that existing IRBL techniques mainly rely on conventional NLP techniques to analyze the bug reports and have not yet fully utilized the stack traces attached to the bug reports. To improve the IRBL technique, we propose a context-aware program simplification technique – COPS – that can localize defective statements in suspicious files by analyzing the stack traces in bug reports, enabling statement-level bug localization for Python-based projects. Our experiment is based on 948 bug reports, and the results show that COPS can effectively localize buggy statements. First, compared to the original stack traces, Top@10 is improved by 102.6%, MAP@10 by 56.2%, and MRR@10 by 95.6%. We found that actual buggy code entities are more likely to appear in the first five frames of the stack trace. Second, COPS can achieve equally good localization performance compared to state-of-the-art statement-level bug localization techniques and achieve 92% buggy statement coverage with a full-scope search. Finally, experiments found that the stack trace's first two-thirds of information is more conducive to localizing buggy statements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZeKaWa应助HY采纳,获得10
刚刚
1秒前
xxy发布了新的文献求助30
1秒前
1秒前
Tiramisu628发布了新的文献求助10
2秒前
李健应助小娅娅采纳,获得10
2秒前
冯123发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
英勇的飞扬完成签到,获得积分10
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
Libra应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
娜娜发布了新的文献求助10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
DijiaXu应助科研通管家采纳,获得10
4秒前
Tourist应助科研通管家采纳,获得150
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得30
4秒前
田様应助飞云采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
4秒前
小面包儿应助科研通管家采纳,获得200
4秒前
4秒前
小小应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097113
求助须知:如何正确求助?哪些是违规求助? 4309682
关于积分的说明 13427832
捐赠科研通 4137094
什么是DOI,文献DOI怎么找? 2266469
邀请新用户注册赠送积分活动 1269541
关于科研通互助平台的介绍 1205874