COPS: An improved information retrieval-based bug localization technique using context-aware program simplification

计算机科学 调试 Python(编程语言) Java 跟踪(心理语言学) 语句(逻辑) 背景(考古学) 程序设计语言 软件错误 情报检索 软件 数据挖掘 人工智能 法学 古生物学 哲学 语言学 政治学 生物
作者
Yilin Yang,Ziyuan Wang,Chunrong Fang,Baowen Xu
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:207: 111868-111868
标识
DOI:10.1016/j.jss.2023.111868
摘要

Information Retrieval Based Bug Localization (IRBL) techniques are well suited for large-scale software debugging with fewer external dependencies and lower execution costs. However, existing IRBL techniques have several challenges, including localization granularity and applicability. First, existing IRBL techniques have not yet achieved statement-level bug localization. Second, almost all studies are limited to Java-based projects, while their effectiveness for other popular programming languages (e.g., Python) is unknown. The reason for these deficiencies is that existing IRBL techniques mainly rely on conventional NLP techniques to analyze the bug reports and have not yet fully utilized the stack traces attached to the bug reports. To improve the IRBL technique, we propose a context-aware program simplification technique – COPS – that can localize defective statements in suspicious files by analyzing the stack traces in bug reports, enabling statement-level bug localization for Python-based projects. Our experiment is based on 948 bug reports, and the results show that COPS can effectively localize buggy statements. First, compared to the original stack traces, Top@10 is improved by 102.6%, MAP@10 by 56.2%, and MRR@10 by 95.6%. We found that actual buggy code entities are more likely to appear in the first five frames of the stack trace. Second, COPS can achieve equally good localization performance compared to state-of-the-art statement-level bug localization techniques and achieve 92% buggy statement coverage with a full-scope search. Finally, experiments found that the stack trace's first two-thirds of information is more conducive to localizing buggy statements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容诗槐完成签到,获得积分10
刚刚
茄子肉末先生完成签到 ,获得积分10
1秒前
xjh发布了新的文献求助10
2秒前
李爱国应助lxy采纳,获得10
2秒前
4秒前
5秒前
皮卡丘发布了新的文献求助10
5秒前
6秒前
hyw发布了新的文献求助10
7秒前
南山完成签到 ,获得积分10
7秒前
8秒前
cj326完成签到 ,获得积分10
10秒前
10秒前
11秒前
455关注了科研通微信公众号
11秒前
香蕉海白发布了新的文献求助10
11秒前
11秒前
南山关注了科研通微信公众号
11秒前
12秒前
12秒前
ljc完成签到,获得积分10
12秒前
lxy发布了新的文献求助10
14秒前
熹熹完成签到,获得积分10
15秒前
领导范儿应助Flori采纳,获得30
15秒前
15秒前
16秒前
Yancy完成签到,获得积分10
16秒前
英姑应助皮卡丘采纳,获得10
17秒前
LLL完成签到,获得积分10
17秒前
布隆的保龄球完成签到,获得积分10
21秒前
21秒前
兰天发布了新的文献求助20
21秒前
21秒前
wshengnan发布了新的文献求助10
26秒前
精灵夜雨应助潇洒的初柔采纳,获得10
27秒前
李爱国应助香蕉海白采纳,获得10
28秒前
29秒前
31秒前
ziying126发布了新的文献求助10
34秒前
登徒子好色完成签到,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667802
求助须知:如何正确求助?哪些是违规求助? 3226272
关于积分的说明 9768903
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608316
邀请新用户注册赠送积分活动 759622
科研通“疑难数据库(出版商)”最低求助积分说明 735407