Identification and targeting of cancer-associated fibroblast signature genes for prognosis and therapy in Cutaneous melanoma

转录组 基因签名 黑色素瘤 医学 基因 基因表达谱 肿瘤科 癌症 生物信息学 癌症研究 计算生物学 内科学 基因表达 生物 遗传学
作者
Guokun Zhang,Pengfei Ji,Peng Xia,Haoyun Song,Zhao Guo,Xiaohui Hu,Yanan Guo,Xinyi Yuan,Yanfeng Song,Rong Shen,Degui Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107597-107597 被引量:17
标识
DOI:10.1016/j.compbiomed.2023.107597
摘要

Cancer-associated fibroblasts (CAFs) play pivotal roles in tumor invasion and metastasis. However, studies on CAF biomarkers in Cutaneous Melanoma (CM) are still scarce. This study aimed to explore the potential CAF biomarkers in CM, propose the potential therapeutic targets, and provide new insights for targeted therapy of CAFs in CM. We utilized weighted gene co-expression network analysis to identify CAF signature genes in CM, and conducted comprehensive bioinformatics analysis on the CAF risk score established by these genes. Moreover, single-cell sequencing analysis, spatial transcriptome analysis, and cell experiments were utilized for verifying the expression and distribution pattern of signature genes. Furthermore, molecular docking was employed to screen potential target drugs. FBLN1 and COL5A1, two crucial CAF signature genes, were screened to establish the CAF risk score. Subsequently, a comprehensive bioinformatic analysis of the CAF risk score revealed that high-risk score group was significantly enriched in pathways associated with tumor progression. Besides, CAF risk score was significantly negatively correlated with clinical prognosis, immunotherapy response, and tumor mutational burden in CM patients. In addition, FBLN1 and COL5A1 were further identified as CAF-specific biomarkers in CM by multi-omics analysis and experimental validation. Eventually, based on these two targets, Mifepristone and Dexamethasone were screened as potential anti-CAFs drugs. The findings indicated that FBLN1 and COL5A1 were the CAF signature genes in CM, which were associated with the progression, treatment, and prognosis of CM. The comprehensive exploration of CAF signature genes is expected to provide new insight for clinical CM therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
YE完成签到 ,获得积分10
刚刚
领导范儿应助下北沢采纳,获得10
1秒前
gaoww发布了新的文献求助10
1秒前
精明凡雁完成签到,获得积分10
1秒前
我是第一名完成签到,获得积分10
1秒前
1秒前
2秒前
宛雷雅发布了新的文献求助30
3秒前
冷风发布了新的文献求助10
3秒前
多多发布了新的文献求助10
3秒前
3秒前
4秒前
李多多发布了新的文献求助10
4秒前
科研通AI6应助胖虎啊采纳,获得10
5秒前
丘比特应助铃科百合子采纳,获得10
6秒前
6秒前
不安青牛应助内向的惜芹采纳,获得10
6秒前
7秒前
kk完成签到,获得积分10
8秒前
淡淡山兰完成签到,获得积分10
9秒前
小白发布了新的文献求助10
9秒前
9秒前
10秒前
一只眠羊发布了新的文献求助10
10秒前
陈龙发布了新的文献求助10
10秒前
无限青柏完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
今后应助苏州小北采纳,获得10
12秒前
12秒前
JamesPei应助热情的寄瑶采纳,获得10
12秒前
7788发布了新的文献求助10
13秒前
mmyhn发布了新的文献求助10
14秒前
星辰大海应助多多采纳,获得10
14秒前
15秒前
轻松的汪汪完成签到,获得积分10
15秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610713
求助须知:如何正确求助?哪些是违规求助? 4695216
关于积分的说明 14885929
捐赠科研通 4723170
什么是DOI,文献DOI怎么找? 2545217
邀请新用户注册赠送积分活动 1509998
关于科研通互助平台的介绍 1473110