Robust Perception Under Adverse Conditions for Autonomous Driving Based on Data Augmentation

恶劣天气 人工智能 感知 计算机科学 计算机视觉 视觉感受 深度学习 可视化 目标检测 模式识别(心理学) 生物 物理 气象学 神经科学
作者
Ziqiang Zheng,Yujie Cheng,Zhichao Xin,Zhibin Yu,Bing Zheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 13916-13929 被引量:1
标识
DOI:10.1109/tits.2023.3297318
摘要

Many existing advanced deep learning-based autonomous systems have recently been used for autonomous vehicles. In general, a deep learning-based visual perception system heavily relies on visual perception to recognize and localize dynamic interest objects (e.g., pedestrians and cars) and indicative traffic signs and lights to assist autonomous vehicles in maneuvering safely. However, the performance of existing object recognition algorithms could degrade significantly under some adverse and challenging scenarios including rainy, foggy, and rainy night conditions. The raindrops, light reflection, and low illumination pose a great challenge to robust object recognition. Thus, A robust and accurate autonomous driving system has attracted growing attention from the computer vision community. To achieve robust and accurate visual perception, we target to build effective and efficient augmentation and fusion techniques based on visual perception under various adverse conditions. The unpaired image-to-image (I2I) synthesis is integrated for visual perception enhancement and effective synthesis-based augmentation. Besides, we design a two-branch architecture to utilize the information from both the original image and the enhanced image synthesized by I2I. We comprehensively and hierarchically investigate the performance improvement and limitation of the proposed system based on visual recognition tasks and network backbones. An extensive experimental analysis of various adverse weather conditions is also included. The experimental results have demonstrated the proposed system could promote the ability of autonomous vehicles for robust and accurate perception under adverse weather conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nana完成签到,获得积分10
刚刚
科目三应助明亮如花采纳,获得10
刚刚
刚刚
wuuToiiin完成签到,获得积分10
1秒前
阿里院士完成签到,获得积分10
1秒前
1秒前
scc发布了新的文献求助10
1秒前
文艺的蜜蜂完成签到 ,获得积分10
1秒前
yllcjl发布了新的文献求助10
2秒前
Mercury发布了新的文献求助10
2秒前
半夏完成签到 ,获得积分20
2秒前
2秒前
房东的猫发布了新的文献求助10
2秒前
Suchen完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
WYxipu完成签到,获得积分20
4秒前
卷aaaa完成签到,获得积分10
4秒前
搜集达人应助kks569采纳,获得10
5秒前
5秒前
5秒前
李爱国应助米酒汤圆采纳,获得10
5秒前
迷路藏鸟发布了新的文献求助10
5秒前
单薄夏山完成签到,获得积分10
6秒前
万能图书馆应助丑小鸭采纳,获得10
6秒前
小诸葛完成签到,获得积分10
6秒前
李健的粉丝团团长应助ym采纳,获得10
6秒前
北城无夏发布了新的文献求助10
6秒前
7秒前
禾伙人发布了新的文献求助10
7秒前
7秒前
7秒前
gxy12完成签到,获得积分10
8秒前
学术垃圾完成签到,获得积分10
8秒前
li完成签到,获得积分20
8秒前
8秒前
IamHK完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485