Robust Perception Under Adverse Conditions for Autonomous Driving Based on Data Augmentation

恶劣天气 人工智能 感知 计算机科学 计算机视觉 视觉感受 深度学习 可视化 目标检测 模式识别(心理学) 生物 物理 气象学 神经科学
作者
Ziqiang Zheng,Yujie Cheng,Zhichao Xin,Zhibin Yu,Bing Zheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 13916-13929 被引量:1
标识
DOI:10.1109/tits.2023.3297318
摘要

Many existing advanced deep learning-based autonomous systems have recently been used for autonomous vehicles. In general, a deep learning-based visual perception system heavily relies on visual perception to recognize and localize dynamic interest objects (e.g., pedestrians and cars) and indicative traffic signs and lights to assist autonomous vehicles in maneuvering safely. However, the performance of existing object recognition algorithms could degrade significantly under some adverse and challenging scenarios including rainy, foggy, and rainy night conditions. The raindrops, light reflection, and low illumination pose a great challenge to robust object recognition. Thus, A robust and accurate autonomous driving system has attracted growing attention from the computer vision community. To achieve robust and accurate visual perception, we target to build effective and efficient augmentation and fusion techniques based on visual perception under various adverse conditions. The unpaired image-to-image (I2I) synthesis is integrated for visual perception enhancement and effective synthesis-based augmentation. Besides, we design a two-branch architecture to utilize the information from both the original image and the enhanced image synthesized by I2I. We comprehensively and hierarchically investigate the performance improvement and limitation of the proposed system based on visual recognition tasks and network backbones. An extensive experimental analysis of various adverse weather conditions is also included. The experimental results have demonstrated the proposed system could promote the ability of autonomous vehicles for robust and accurate perception under adverse weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助wind采纳,获得10
1秒前
1秒前
淙淙柔水完成签到,获得积分0
1秒前
1秒前
dhdafwet完成签到,获得积分10
2秒前
胡夫欣发布了新的文献求助10
2秒前
wanci应助张益龙采纳,获得10
2秒前
快乐的访梦完成签到,获得积分10
2秒前
孙苡乔发布了新的文献求助10
2秒前
3秒前
所所应助超级王国采纳,获得10
3秒前
3秒前
zz完成签到,获得积分10
4秒前
4秒前
orixero应助nightmares采纳,获得10
4秒前
5秒前
嘻嘻完成签到,获得积分10
5秒前
5秒前
5秒前
杨杨爱科研完成签到,获得积分20
5秒前
5秒前
Gj969689发布了新的文献求助10
5秒前
Devin Irving发布了新的文献求助10
6秒前
musei完成签到,获得积分10
7秒前
7秒前
7秒前
科研小菜发布了新的文献求助10
7秒前
nqterysc发布了新的文献求助10
8秒前
8秒前
LaFee完成签到,获得积分10
9秒前
9秒前
fzhed发布了新的文献求助10
9秒前
9秒前
冷酷的毛豆完成签到,获得积分10
9秒前
遇见给遇见的求助进行了留言
9秒前
青又完成签到,获得积分10
9秒前
Tourist应助aaaa采纳,获得10
9秒前
所所应助蛋堡采纳,获得10
10秒前
科研通AI6应助CXSCXD采纳,获得10
10秒前
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154942
求助须知:如何正确求助?哪些是违规求助? 4350694
关于积分的说明 13546246
捐赠科研通 4193517
什么是DOI,文献DOI怎么找? 2299960
邀请新用户注册赠送积分活动 1299897
关于科研通互助平台的介绍 1244949