Robust Perception Under Adverse Conditions for Autonomous Driving Based on Data Augmentation

恶劣天气 人工智能 感知 计算机科学 计算机视觉 视觉感受 深度学习 可视化 目标检测 模式识别(心理学) 生物 物理 气象学 神经科学
作者
Ziqiang Zheng,Yujie Cheng,Zhichao Xin,Zhibin Yu,Bing Zheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 13916-13929 被引量:1
标识
DOI:10.1109/tits.2023.3297318
摘要

Many existing advanced deep learning-based autonomous systems have recently been used for autonomous vehicles. In general, a deep learning-based visual perception system heavily relies on visual perception to recognize and localize dynamic interest objects (e.g., pedestrians and cars) and indicative traffic signs and lights to assist autonomous vehicles in maneuvering safely. However, the performance of existing object recognition algorithms could degrade significantly under some adverse and challenging scenarios including rainy, foggy, and rainy night conditions. The raindrops, light reflection, and low illumination pose a great challenge to robust object recognition. Thus, A robust and accurate autonomous driving system has attracted growing attention from the computer vision community. To achieve robust and accurate visual perception, we target to build effective and efficient augmentation and fusion techniques based on visual perception under various adverse conditions. The unpaired image-to-image (I2I) synthesis is integrated for visual perception enhancement and effective synthesis-based augmentation. Besides, we design a two-branch architecture to utilize the information from both the original image and the enhanced image synthesized by I2I. We comprehensively and hierarchically investigate the performance improvement and limitation of the proposed system based on visual recognition tasks and network backbones. An extensive experimental analysis of various adverse weather conditions is also included. The experimental results have demonstrated the proposed system could promote the ability of autonomous vehicles for robust and accurate perception under adverse weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌新完成签到,获得积分10
1秒前
彭于晏应助魔幻若血采纳,获得10
1秒前
kuangweiming完成签到,获得积分10
2秒前
2秒前
星辰大海应助浮生采纳,获得10
3秒前
3秒前
Jasper应助南墙杀手采纳,获得10
3秒前
丘比特应助muyan采纳,获得10
3秒前
fxx发布了新的文献求助10
4秒前
4秒前
4秒前
yu完成签到 ,获得积分10
5秒前
5秒前
笑点低的静竹完成签到,获得积分10
5秒前
CiCi完成签到,获得积分10
5秒前
zytz发布了新的文献求助10
6秒前
小二郎应助12233采纳,获得10
6秒前
6秒前
7秒前
沙田的柚子完成签到 ,获得积分10
7秒前
神音完成签到,获得积分10
8秒前
嗡嗡嗡发布了新的文献求助10
8秒前
wop111应助就叫十一吧采纳,获得30
8秒前
AXX041795完成签到,获得积分10
8秒前
8秒前
朱慧龙发布了新的文献求助10
8秒前
10秒前
Lucas应助Three采纳,获得10
10秒前
Hello应助xuanwu采纳,获得10
10秒前
Dr.zhou发布了新的文献求助20
10秒前
eisenchen发布了新的文献求助10
11秒前
不锈钢臭宝宝完成签到,获得积分20
11秒前
文刀发布了新的文献求助10
11秒前
12秒前
脑洞疼应助lalala采纳,获得10
12秒前
12秒前
土豆完成签到,获得积分10
13秒前
13秒前
喜喜发布了新的文献求助10
13秒前
冯岩完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988890
求助须知:如何正确求助?哪些是违规求助? 4238321
关于积分的说明 13202223
捐赠科研通 4032221
什么是DOI,文献DOI怎么找? 2206012
邀请新用户注册赠送积分活动 1217341
关于科研通互助平台的介绍 1135527