Robust Perception Under Adverse Conditions for Autonomous Driving Based on Data Augmentation

恶劣天气 人工智能 感知 计算机科学 计算机视觉 视觉感受 深度学习 可视化 目标检测 模式识别(心理学) 生物 物理 气象学 神经科学
作者
Ziqiang Zheng,Yujie Cheng,Zhichao Xin,Zhibin Yu,Bing Zheng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 13916-13929 被引量:1
标识
DOI:10.1109/tits.2023.3297318
摘要

Many existing advanced deep learning-based autonomous systems have recently been used for autonomous vehicles. In general, a deep learning-based visual perception system heavily relies on visual perception to recognize and localize dynamic interest objects (e.g., pedestrians and cars) and indicative traffic signs and lights to assist autonomous vehicles in maneuvering safely. However, the performance of existing object recognition algorithms could degrade significantly under some adverse and challenging scenarios including rainy, foggy, and rainy night conditions. The raindrops, light reflection, and low illumination pose a great challenge to robust object recognition. Thus, A robust and accurate autonomous driving system has attracted growing attention from the computer vision community. To achieve robust and accurate visual perception, we target to build effective and efficient augmentation and fusion techniques based on visual perception under various adverse conditions. The unpaired image-to-image (I2I) synthesis is integrated for visual perception enhancement and effective synthesis-based augmentation. Besides, we design a two-branch architecture to utilize the information from both the original image and the enhanced image synthesized by I2I. We comprehensively and hierarchically investigate the performance improvement and limitation of the proposed system based on visual recognition tasks and network backbones. An extensive experimental analysis of various adverse weather conditions is also included. The experimental results have demonstrated the proposed system could promote the ability of autonomous vehicles for robust and accurate perception under adverse weather conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
刚刚
刘闹闹完成签到 ,获得积分10
刚刚
xiaojcom应助xiaoxiaoliang采纳,获得50
1秒前
粽子发布了新的文献求助20
1秒前
HU完成签到 ,获得积分10
2秒前
5秒前
鹿不羁完成签到 ,获得积分10
9秒前
重要无极完成签到,获得积分0
9秒前
Hancock完成签到 ,获得积分10
10秒前
10秒前
10秒前
九秋霜完成签到,获得积分10
12秒前
wgcheng发布了新的文献求助10
12秒前
13秒前
合适妙海发布了新的文献求助10
13秒前
兴奋代柔完成签到 ,获得积分10
14秒前
怡然新梅发布了新的文献求助10
14秒前
Orange应助苹果小八采纳,获得10
14秒前
CipherSage应助服部平次采纳,获得10
16秒前
Annie完成签到 ,获得积分10
17秒前
活泼啤酒完成签到 ,获得积分10
19秒前
19秒前
茗姜完成签到,获得积分10
20秒前
21秒前
一只大憨憨猫完成签到,获得积分10
21秒前
22秒前
所所应助星星采纳,获得10
22秒前
22秒前
答辩完成签到,获得积分10
23秒前
23秒前
25秒前
25秒前
25秒前
Yippee完成签到 ,获得积分10
26秒前
123456777完成签到 ,获得积分10
26秒前
26秒前
timo完成签到,获得积分10
26秒前
浩浩浩完成签到,获得积分10
27秒前
張肉肉关注了科研通微信公众号
27秒前
额E完成签到,获得积分20
28秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816164
关于积分的说明 7911772
捐赠科研通 2475878
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388