Machine learning for sustainable reutilization of waste materials as energy sources – a comprehensive review

可持续能源 废物管理 废物转化为能源 可持续社会 工程类 能量(信号处理) 环境科学 环境经济学 可再生能源 工艺工程 持续性 城市固体废物 经济 生态学 统计 数学 电气工程 生物
作者
Wei Peng,Omid Karimi Sadaghiani
出处
期刊:International Journal of Green Energy [Informa]
卷期号:21 (7): 1641-1666 被引量:2
标识
DOI:10.1080/15435075.2023.2255647
摘要

ABSTRACTThis work reviews Machine Learning applications in the sustainable utilization of waste materials as energy source so that analysis of the past works exposed the lack of reviewing study. To solve it, the origin of waste biomass raw materials is explained, and the application of Machine Learning in this section is scrutinized. After analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in waste biomass production areas to enhance the quality and quantity of production, improve the predictions, diminish the losses, as well as increase storage and transformation conditions. The positive effects and application with the utilized algorithms and other effective information are collected in this work for the first time. According to the statistical analysis, in 20% out of the studies conducted about the application of Machine Learning and Deep Learning in waste biomass raw materials, Artificial Neural Network (ANN) algorithm has been applied. Afterward, the Super Vector Machine (SVM) and Random Forest (RF) are the second and third most-utilized algorithms applied in 15% and 14% of studies. Meanwhile, 27% of studies focused on the applications of Machine Learning and Deep Learning in the Forest wastes.KEYWORDS: Machine LearningDeep learningwaste materialssustainable production, energy source Abbreviations Abbreviation=MeaningML=Machine LearningDL=Deep LearningANN=Artificial Neural NetworkIoT=Internet of ThingsSVM=Super Vector MachineNB=Naive BayesKNN=K-nearest NeighborDT=Decision TreeRF=Random ForestANFIS=Adaptive Network Fuzzy Inference SystemXGBoost=Extreme Gradient BoostingGAM=Generalized Additive ModelRNN=Recurrent Neural NetworkMLR=Multiple Linear RegressionRBNN=Radial-basis Neural NetworkSMOR=Sequential Minimal Optimization RegressionLDA=Linear Discriminant AnalysisFRBS=Fuzzy Rule-based SystemsDBN=Deep Belief NetworkCL=Classification TreesC=CarbonO=OxygenS=SulphurA=AshK=PotassiumP=PhosphorusCa=CalciumZn=ZinkCO2=Carbon DioxideNIR=Near InfraredRBF=Radial Basis FunctionET=Extra TreesSPA=Successive Projection AlgorithmLRM=Linear Regression ModelCRBM=Conditional Restricted Boltzmann MachineGA=Genetic AlgorithmRO=Reverse Osmosist-SNE=t-Distributed Stochastic Neighbor EmbeddingDBSCAN=Density-Based Spatial Clustering of Applications with NoiseGAN=Generative Adversial NetworkGRU=Gated Recurrent UnitsSMR=Stepwise Multiple RegressionLSTM=Long Short Term MemoryCNN=Convolutional Neural NetworkMLP=Multilayer PerceptronFPN Mask=Feature Pyramid Network MaskGP=Gaussian ProcessDNN=Deep Neural NetworkPR=Polynomial RegressionGBDT=Gradient Boosting Decision TreeAdaBoost=Adaptive boostingPLSDA=Partial Least Square Discriminant AnalysisRCCN=Region-based CNNPGM=Probabilistic Graphical ModelsGPR=Gaussian Processes RegressionBNN=Bayesian Neural NetworkLR=Logistics RegressionPLS-DA=Partial Least Squares Discriminant AnalysisBRT=Boosted Regression TreeGMMs=Gaussian Mixture ModelsLSSVR=Least-Squares Support Vector RegressionGBM=Generalized Boosted ModelH=HudrogenN=NitrogenCl=chlorinePb=Lead (Plumbum)Na=SodiumMg=MagnesiumSi=SilicaHHV=Higher Heating ValuePMF=Positive Matrix FactorizationPLS=Partial Least SquaresKRR=Kernel Ridge RegressionMARS=Multivariate Adaptive Regression SplinesCARS=Competitive Adaptive Reweighted SamplingSVR=Supper Vector RegressionPCA=Principal Component AnalysisDO=Dissolved OxygenNF=Nano-filtrationLSA=Latent Semantic AnalysisGNN=Graph Neural NetworksGAT=Graph Attention NetworkLRLS=Kernel-based Regularized Least SquaresGLM=Generalized Linear ModelDisclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助刘耳朵采纳,获得10
刚刚
满眼星辰完成签到 ,获得积分10
1秒前
zokor完成签到 ,获得积分10
1秒前
卓梨完成签到 ,获得积分10
2秒前
宓天问完成签到,获得积分10
2秒前
shuxue完成签到,获得积分10
3秒前
乏善可陈完成签到,获得积分10
4秒前
Hyperme发布了新的文献求助10
4秒前
学分完成签到 ,获得积分10
5秒前
坚定的可愁完成签到,获得积分10
6秒前
虚幻的一一完成签到,获得积分20
7秒前
8秒前
10秒前
domkps完成签到 ,获得积分10
11秒前
大胆妖孽完成签到,获得积分10
14秒前
14秒前
饱满的大碗完成签到 ,获得积分10
16秒前
zhaoxiaonuan完成签到,获得积分10
16秒前
jun完成签到 ,获得积分10
18秒前
都是应助科研通管家采纳,获得20
21秒前
科研通AI2S应助科研通管家采纳,获得50
21秒前
Loooong应助科研通管家采纳,获得20
21秒前
打打应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得30
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
飞快的金鑫完成签到,获得积分10
23秒前
JIE完成签到,获得积分10
23秒前
科研小子发布了新的文献求助10
24秒前
隐形曼青应助研友_想想采纳,获得10
27秒前
Tree_完成签到 ,获得积分10
28秒前
knn完成签到 ,获得积分10
28秒前
青羽落霞完成签到 ,获得积分10
29秒前
linggle完成签到 ,获得积分10
34秒前
35秒前
talent发布了新的文献求助10
36秒前
vincy完成签到 ,获得积分10
36秒前
科研小子完成签到,获得积分10
38秒前
研友_想想发布了新的文献求助10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788096
关于积分的说明 7784635
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011