Machine learning for sustainable reutilization of waste materials as energy sources – a comprehensive review

可持续能源 废物管理 废物转化为能源 可持续社会 工程类 能量(信号处理) 环境科学 环境经济学 可再生能源 工艺工程 持续性 城市固体废物 经济 生态学 统计 数学 电气工程 生物
作者
Wei Peng,Omid Karimi Sadaghiani
出处
期刊:International Journal of Green Energy [Informa]
卷期号:21 (7): 1641-1666 被引量:5
标识
DOI:10.1080/15435075.2023.2255647
摘要

ABSTRACTThis work reviews Machine Learning applications in the sustainable utilization of waste materials as energy source so that analysis of the past works exposed the lack of reviewing study. To solve it, the origin of waste biomass raw materials is explained, and the application of Machine Learning in this section is scrutinized. After analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in waste biomass production areas to enhance the quality and quantity of production, improve the predictions, diminish the losses, as well as increase storage and transformation conditions. The positive effects and application with the utilized algorithms and other effective information are collected in this work for the first time. According to the statistical analysis, in 20% out of the studies conducted about the application of Machine Learning and Deep Learning in waste biomass raw materials, Artificial Neural Network (ANN) algorithm has been applied. Afterward, the Super Vector Machine (SVM) and Random Forest (RF) are the second and third most-utilized algorithms applied in 15% and 14% of studies. Meanwhile, 27% of studies focused on the applications of Machine Learning and Deep Learning in the Forest wastes.KEYWORDS: Machine LearningDeep learningwaste materialssustainable production, energy source Abbreviations Abbreviation=MeaningML=Machine LearningDL=Deep LearningANN=Artificial Neural NetworkIoT=Internet of ThingsSVM=Super Vector MachineNB=Naive BayesKNN=K-nearest NeighborDT=Decision TreeRF=Random ForestANFIS=Adaptive Network Fuzzy Inference SystemXGBoost=Extreme Gradient BoostingGAM=Generalized Additive ModelRNN=Recurrent Neural NetworkMLR=Multiple Linear RegressionRBNN=Radial-basis Neural NetworkSMOR=Sequential Minimal Optimization RegressionLDA=Linear Discriminant AnalysisFRBS=Fuzzy Rule-based SystemsDBN=Deep Belief NetworkCL=Classification TreesC=CarbonO=OxygenS=SulphurA=AshK=PotassiumP=PhosphorusCa=CalciumZn=ZinkCO2=Carbon DioxideNIR=Near InfraredRBF=Radial Basis FunctionET=Extra TreesSPA=Successive Projection AlgorithmLRM=Linear Regression ModelCRBM=Conditional Restricted Boltzmann MachineGA=Genetic AlgorithmRO=Reverse Osmosist-SNE=t-Distributed Stochastic Neighbor EmbeddingDBSCAN=Density-Based Spatial Clustering of Applications with NoiseGAN=Generative Adversial NetworkGRU=Gated Recurrent UnitsSMR=Stepwise Multiple RegressionLSTM=Long Short Term MemoryCNN=Convolutional Neural NetworkMLP=Multilayer PerceptronFPN Mask=Feature Pyramid Network MaskGP=Gaussian ProcessDNN=Deep Neural NetworkPR=Polynomial RegressionGBDT=Gradient Boosting Decision TreeAdaBoost=Adaptive boostingPLSDA=Partial Least Square Discriminant AnalysisRCCN=Region-based CNNPGM=Probabilistic Graphical ModelsGPR=Gaussian Processes RegressionBNN=Bayesian Neural NetworkLR=Logistics RegressionPLS-DA=Partial Least Squares Discriminant AnalysisBRT=Boosted Regression TreeGMMs=Gaussian Mixture ModelsLSSVR=Least-Squares Support Vector RegressionGBM=Generalized Boosted ModelH=HudrogenN=NitrogenCl=chlorinePb=Lead (Plumbum)Na=SodiumMg=MagnesiumSi=SilicaHHV=Higher Heating ValuePMF=Positive Matrix FactorizationPLS=Partial Least SquaresKRR=Kernel Ridge RegressionMARS=Multivariate Adaptive Regression SplinesCARS=Competitive Adaptive Reweighted SamplingSVR=Supper Vector RegressionPCA=Principal Component AnalysisDO=Dissolved OxygenNF=Nano-filtrationLSA=Latent Semantic AnalysisGNN=Graph Neural NetworksGAT=Graph Attention NetworkLRLS=Kernel-based Regularized Least SquaresGLM=Generalized Linear ModelDisclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逐风给逐风的求助进行了留言
1秒前
科研通AI5应助灌饼采纳,获得30
1秒前
Owen应助Zzzzzzzzzzz采纳,获得10
2秒前
3秒前
4秒前
巫马秋寒应助笑点低可乐采纳,获得10
4秒前
xuex1完成签到,获得积分10
4秒前
情怀应助阳光的雁山采纳,获得10
6秒前
斯文败类应助jy采纳,获得10
6秒前
6秒前
日月轮回发布了新的文献求助10
7秒前
36456657应助木香采纳,获得10
8秒前
无花果应助ns采纳,获得30
8秒前
刘铭晨完成签到,获得积分10
8秒前
9秒前
YY发布了新的文献求助10
9秒前
Rrr发布了新的文献求助10
10秒前
学术蠕虫发布了新的文献求助10
10秒前
10秒前
miumiuka完成签到,获得积分10
11秒前
个性的薯片应助lyt采纳,获得20
13秒前
sweetbearm应助寒涛先生采纳,获得10
14秒前
wanci应助YY采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
HC完成签到 ,获得积分10
18秒前
姚姚的赵赵完成签到,获得积分10
18秒前
JamesPei应助大豪子采纳,获得30
19秒前
jy发布了新的文献求助10
19秒前
19秒前
陆靖易发布了新的文献求助10
19秒前
LQW完成签到,获得积分20
20秒前
21秒前
plant完成签到,获得积分10
21秒前
lyt完成签到,获得积分10
21秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808