Machine learning for sustainable reutilization of waste materials as energy sources – a comprehensive review

可持续能源 废物管理 废物转化为能源 可持续社会 工程类 能量(信号处理) 环境科学 环境经济学 可再生能源 工艺工程 持续性 城市固体废物 经济 生态学 统计 数学 电气工程 生物
作者
Wei Peng,Omid Karimi Sadaghiani
出处
期刊:International Journal of Green Energy [Taylor & Francis]
卷期号:21 (7): 1641-1666 被引量:5
标识
DOI:10.1080/15435075.2023.2255647
摘要

ABSTRACTThis work reviews Machine Learning applications in the sustainable utilization of waste materials as energy source so that analysis of the past works exposed the lack of reviewing study. To solve it, the origin of waste biomass raw materials is explained, and the application of Machine Learning in this section is scrutinized. After analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in waste biomass production areas to enhance the quality and quantity of production, improve the predictions, diminish the losses, as well as increase storage and transformation conditions. The positive effects and application with the utilized algorithms and other effective information are collected in this work for the first time. According to the statistical analysis, in 20% out of the studies conducted about the application of Machine Learning and Deep Learning in waste biomass raw materials, Artificial Neural Network (ANN) algorithm has been applied. Afterward, the Super Vector Machine (SVM) and Random Forest (RF) are the second and third most-utilized algorithms applied in 15% and 14% of studies. Meanwhile, 27% of studies focused on the applications of Machine Learning and Deep Learning in the Forest wastes.KEYWORDS: Machine LearningDeep learningwaste materialssustainable production, energy source Abbreviations Abbreviation=MeaningML=Machine LearningDL=Deep LearningANN=Artificial Neural NetworkIoT=Internet of ThingsSVM=Super Vector MachineNB=Naive BayesKNN=K-nearest NeighborDT=Decision TreeRF=Random ForestANFIS=Adaptive Network Fuzzy Inference SystemXGBoost=Extreme Gradient BoostingGAM=Generalized Additive ModelRNN=Recurrent Neural NetworkMLR=Multiple Linear RegressionRBNN=Radial-basis Neural NetworkSMOR=Sequential Minimal Optimization RegressionLDA=Linear Discriminant AnalysisFRBS=Fuzzy Rule-based SystemsDBN=Deep Belief NetworkCL=Classification TreesC=CarbonO=OxygenS=SulphurA=AshK=PotassiumP=PhosphorusCa=CalciumZn=ZinkCO2=Carbon DioxideNIR=Near InfraredRBF=Radial Basis FunctionET=Extra TreesSPA=Successive Projection AlgorithmLRM=Linear Regression ModelCRBM=Conditional Restricted Boltzmann MachineGA=Genetic AlgorithmRO=Reverse Osmosist-SNE=t-Distributed Stochastic Neighbor EmbeddingDBSCAN=Density-Based Spatial Clustering of Applications with NoiseGAN=Generative Adversial NetworkGRU=Gated Recurrent UnitsSMR=Stepwise Multiple RegressionLSTM=Long Short Term MemoryCNN=Convolutional Neural NetworkMLP=Multilayer PerceptronFPN Mask=Feature Pyramid Network MaskGP=Gaussian ProcessDNN=Deep Neural NetworkPR=Polynomial RegressionGBDT=Gradient Boosting Decision TreeAdaBoost=Adaptive boostingPLSDA=Partial Least Square Discriminant AnalysisRCCN=Region-based CNNPGM=Probabilistic Graphical ModelsGPR=Gaussian Processes RegressionBNN=Bayesian Neural NetworkLR=Logistics RegressionPLS-DA=Partial Least Squares Discriminant AnalysisBRT=Boosted Regression TreeGMMs=Gaussian Mixture ModelsLSSVR=Least-Squares Support Vector RegressionGBM=Generalized Boosted ModelH=HudrogenN=NitrogenCl=chlorinePb=Lead (Plumbum)Na=SodiumMg=MagnesiumSi=SilicaHHV=Higher Heating ValuePMF=Positive Matrix FactorizationPLS=Partial Least SquaresKRR=Kernel Ridge RegressionMARS=Multivariate Adaptive Regression SplinesCARS=Competitive Adaptive Reweighted SamplingSVR=Supper Vector RegressionPCA=Principal Component AnalysisDO=Dissolved OxygenNF=Nano-filtrationLSA=Latent Semantic AnalysisGNN=Graph Neural NetworksGAT=Graph Attention NetworkLRLS=Kernel-based Regularized Least SquaresGLM=Generalized Linear ModelDisclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin琳发布了新的文献求助10
刚刚
1秒前
1秒前
Coco完成签到,获得积分10
2秒前
可爱的函函应助yy采纳,获得10
3秒前
xjx发布了新的文献求助10
3秒前
最佳完成签到 ,获得积分10
3秒前
英姑应助冬季去看雨采纳,获得10
4秒前
马玲完成签到,获得积分10
4秒前
4秒前
pp‘s完成签到,获得积分10
4秒前
lsc发布了新的文献求助10
5秒前
6秒前
重要达发布了新的文献求助10
6秒前
zfm发布了新的文献求助10
6秒前
xjcy给zj的求助进行了留言
6秒前
zhuzihao发布了新的文献求助10
6秒前
xjcy应助落后爆米花采纳,获得10
6秒前
自然的箴发布了新的文献求助10
6秒前
LLL发布了新的文献求助10
7秒前
7秒前
央央完成签到,获得积分10
7秒前
沈雨琦应助youjun采纳,获得10
8秒前
白小泽完成签到,获得积分10
9秒前
科研通AI6应助马玲采纳,获得10
9秒前
白桃发布了新的文献求助10
10秒前
10秒前
vfvv完成签到,获得积分10
11秒前
yff发布了新的文献求助10
11秒前
11秒前
上官若男应助xjx采纳,获得50
11秒前
13秒前
陶醉信封发布了新的文献求助10
13秒前
饭神仙鱼完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
思源应助神勇的天问采纳,获得10
14秒前
煜琪完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585432
求助须知:如何正确求助?哪些是违规求助? 4002122
关于积分的说明 12389406
捐赠科研通 3678232
什么是DOI,文献DOI怎么找? 2027162
邀请新用户注册赠送积分活动 1060707
科研通“疑难数据库(出版商)”最低求助积分说明 947227