Machine learning for sustainable reutilization of waste materials as energy sources – a comprehensive review

可持续能源 废物管理 废物转化为能源 可持续社会 工程类 能量(信号处理) 环境科学 环境经济学 可再生能源 工艺工程 持续性 城市固体废物 经济 生物 统计 电气工程 生态学 数学
作者
Wei Peng,Omid Karimi Sadaghiani
出处
期刊:International Journal of Green Energy [Taylor & Francis]
卷期号:21 (7): 1641-1666 被引量:5
标识
DOI:10.1080/15435075.2023.2255647
摘要

ABSTRACTThis work reviews Machine Learning applications in the sustainable utilization of waste materials as energy source so that analysis of the past works exposed the lack of reviewing study. To solve it, the origin of waste biomass raw materials is explained, and the application of Machine Learning in this section is scrutinized. After analysis of numerous papers, it is concluded that Machine Learning and Deep Learning are widely utilized in waste biomass production areas to enhance the quality and quantity of production, improve the predictions, diminish the losses, as well as increase storage and transformation conditions. The positive effects and application with the utilized algorithms and other effective information are collected in this work for the first time. According to the statistical analysis, in 20% out of the studies conducted about the application of Machine Learning and Deep Learning in waste biomass raw materials, Artificial Neural Network (ANN) algorithm has been applied. Afterward, the Super Vector Machine (SVM) and Random Forest (RF) are the second and third most-utilized algorithms applied in 15% and 14% of studies. Meanwhile, 27% of studies focused on the applications of Machine Learning and Deep Learning in the Forest wastes.KEYWORDS: Machine LearningDeep learningwaste materialssustainable production, energy source Abbreviations Abbreviation=MeaningML=Machine LearningDL=Deep LearningANN=Artificial Neural NetworkIoT=Internet of ThingsSVM=Super Vector MachineNB=Naive BayesKNN=K-nearest NeighborDT=Decision TreeRF=Random ForestANFIS=Adaptive Network Fuzzy Inference SystemXGBoost=Extreme Gradient BoostingGAM=Generalized Additive ModelRNN=Recurrent Neural NetworkMLR=Multiple Linear RegressionRBNN=Radial-basis Neural NetworkSMOR=Sequential Minimal Optimization RegressionLDA=Linear Discriminant AnalysisFRBS=Fuzzy Rule-based SystemsDBN=Deep Belief NetworkCL=Classification TreesC=CarbonO=OxygenS=SulphurA=AshK=PotassiumP=PhosphorusCa=CalciumZn=ZinkCO2=Carbon DioxideNIR=Near InfraredRBF=Radial Basis FunctionET=Extra TreesSPA=Successive Projection AlgorithmLRM=Linear Regression ModelCRBM=Conditional Restricted Boltzmann MachineGA=Genetic AlgorithmRO=Reverse Osmosist-SNE=t-Distributed Stochastic Neighbor EmbeddingDBSCAN=Density-Based Spatial Clustering of Applications with NoiseGAN=Generative Adversial NetworkGRU=Gated Recurrent UnitsSMR=Stepwise Multiple RegressionLSTM=Long Short Term MemoryCNN=Convolutional Neural NetworkMLP=Multilayer PerceptronFPN Mask=Feature Pyramid Network MaskGP=Gaussian ProcessDNN=Deep Neural NetworkPR=Polynomial RegressionGBDT=Gradient Boosting Decision TreeAdaBoost=Adaptive boostingPLSDA=Partial Least Square Discriminant AnalysisRCCN=Region-based CNNPGM=Probabilistic Graphical ModelsGPR=Gaussian Processes RegressionBNN=Bayesian Neural NetworkLR=Logistics RegressionPLS-DA=Partial Least Squares Discriminant AnalysisBRT=Boosted Regression TreeGMMs=Gaussian Mixture ModelsLSSVR=Least-Squares Support Vector RegressionGBM=Generalized Boosted ModelH=HudrogenN=NitrogenCl=chlorinePb=Lead (Plumbum)Na=SodiumMg=MagnesiumSi=SilicaHHV=Higher Heating ValuePMF=Positive Matrix FactorizationPLS=Partial Least SquaresKRR=Kernel Ridge RegressionMARS=Multivariate Adaptive Regression SplinesCARS=Competitive Adaptive Reweighted SamplingSVR=Supper Vector RegressionPCA=Principal Component AnalysisDO=Dissolved OxygenNF=Nano-filtrationLSA=Latent Semantic AnalysisGNN=Graph Neural NetworksGAT=Graph Attention NetworkLRLS=Kernel-based Regularized Least SquaresGLM=Generalized Linear ModelDisclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助寒月如雪采纳,获得10
刚刚
1秒前
skier发布了新的文献求助10
1秒前
thousandlong发布了新的文献求助10
2秒前
赘婿应助YY采纳,获得10
2秒前
徐逊发布了新的文献求助10
2秒前
more发布了新的文献求助10
2秒前
3秒前
清爽乐菱应助哇咔咔采纳,获得30
3秒前
GH完成签到,获得积分10
3秒前
3秒前
风趣的从安完成签到 ,获得积分10
4秒前
彭于晏应助酷酷的小张采纳,获得10
4秒前
6秒前
zino发布了新的文献求助10
6秒前
6秒前
6秒前
我的文献发布了新的文献求助20
7秒前
thousandlong完成签到,获得积分10
8秒前
8秒前
奋斗蜗牛发布了新的文献求助10
9秒前
沸羊羊发布了新的文献求助10
9秒前
skier完成签到,获得积分10
9秒前
9秒前
BINGBONG完成签到,获得积分10
10秒前
10秒前
biduoshen完成签到,获得积分10
11秒前
shulei发布了新的文献求助10
11秒前
充电宝应助tomorrow采纳,获得10
11秒前
科研通AI2S应助林柠采纳,获得10
12秒前
fd163c发布了新的文献求助20
12秒前
13秒前
14秒前
bkagyin应助涵泽采纳,获得10
14秒前
wqwqwq完成签到 ,获得积分10
14秒前
15秒前
15秒前
小小人儿完成签到,获得积分20
15秒前
15秒前
寒月如雪发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126