Novel synergistically effects of palladium-iron bimetal and manganese carbonate carrier for catalytic oxidation of formaldehyde at room temperature

催化作用 化学 无机化学 甲醛 吸附 共沉淀 格式化 氧气 催化氧化 有机化学
作者
Xuyu Wang,Jing‐Feng Li,Jun Xing,Manyu Zhang,Rui Liao,Chongtai Wang,Yingjie Hua,Hongbing Ji
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:656: 104-115 被引量:4
标识
DOI:10.1016/j.jcis.2023.11.095
摘要

The elimination of formaldehyde at room temperature holds immense potential for various applications, and the incorporation of a catalyst rich in surface hydroxyl groups and oxygen significantly enhances its catalytic activity towards formaldehyde oxidation. By employing a coprecipitation method, we successfully achieved a palladium domain confined within the manganese carbonate lattice and doped with iron. This synergistic effect between highly dispersed palladium and iron greatly amplifies the concentration of surface hydroxyl groups and oxygen on the catalyst, thereby enabling complete oxidation of formaldehyde at ambient conditions. The proposed method facilitates the formation of domain-limited palladium within the MnCO3 lattice, thereby enhancing the dispersion of palladium and facilitating its partial incorporation into the MnCO3 lattice. Consequently, this approach promotes increased exposure of active sites and enhances the catalyst's capacity for oxygen activation. The co-doping of iron effectively splits the doping sites of palladium to further enhance its dispersion, while simultaneously modifying the electronic modification of the catalyst to alter formaldehyde's adsorption strength on it. Manganese carbonate exhibits superior adsorption capability for activated surface hydroxyl groups due to the presence of carbonate. In situ infrared testing revealed that dioxymethylene and formate are primary products resulting from catalytic oxidation of formaldehyde, with catalyst surface oxygen and hydroxyl groups playing a crucial role in intermediate product decomposition and oxidation. This study provides novel insights for designing palladium-based catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
11发布了新的文献求助10
2秒前
大个应助limof采纳,获得10
2秒前
3秒前
竹筏过海应助chen采纳,获得50
4秒前
4秒前
schoolboy发布了新的文献求助10
4秒前
完美世界应助洛尚采纳,获得10
4秒前
苹果萧发布了新的文献求助10
5秒前
钟是一梦发布了新的文献求助10
6秒前
Lucas应助Light采纳,获得10
7秒前
7秒前
7秒前
李健的粉丝团团长应助Ll采纳,获得10
7秒前
7秒前
JQKing完成签到,获得积分10
8秒前
8秒前
zs完成签到 ,获得积分10
8秒前
8秒前
11完成签到,获得积分20
8秒前
一定会更好的完成签到,获得积分10
9秒前
Pangsj发布了新的文献求助10
9秒前
姆姆完成签到,获得积分10
9秒前
领导范儿应助落晨采纳,获得10
9秒前
10秒前
善良的安卉完成签到,获得积分10
10秒前
淡定吃吃发布了新的文献求助10
11秒前
yyf关闭了yyf文献求助
11秒前
12秒前
kokodayour完成签到,获得积分10
12秒前
Quin完成签到,获得积分10
12秒前
12秒前
冷艳乐松完成签到,获得积分10
13秒前
13秒前
13秒前
诸葛雪兰完成签到,获得积分10
14秒前
洛尚完成签到,获得积分10
14秒前
czq完成签到,获得积分10
14秒前
VVhahaha完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740