Novel synergistically effects of palladium-iron bimetal and manganese carbonate carrier for catalytic oxidation of formaldehyde at room temperature

催化作用 化学 无机化学 甲醛 吸附 共沉淀 格式化 氧气 催化氧化 有机化学
作者
Xuyu Wang,Jing‐Feng Li,Jun Xing,Manyu Zhang,Rui Liao,Chongtai Wang,Yingjie Hua,Hongbing Ji
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:656: 104-115 被引量:4
标识
DOI:10.1016/j.jcis.2023.11.095
摘要

The elimination of formaldehyde at room temperature holds immense potential for various applications, and the incorporation of a catalyst rich in surface hydroxyl groups and oxygen significantly enhances its catalytic activity towards formaldehyde oxidation. By employing a coprecipitation method, we successfully achieved a palladium domain confined within the manganese carbonate lattice and doped with iron. This synergistic effect between highly dispersed palladium and iron greatly amplifies the concentration of surface hydroxyl groups and oxygen on the catalyst, thereby enabling complete oxidation of formaldehyde at ambient conditions. The proposed method facilitates the formation of domain-limited palladium within the MnCO3 lattice, thereby enhancing the dispersion of palladium and facilitating its partial incorporation into the MnCO3 lattice. Consequently, this approach promotes increased exposure of active sites and enhances the catalyst's capacity for oxygen activation. The co-doping of iron effectively splits the doping sites of palladium to further enhance its dispersion, while simultaneously modifying the electronic modification of the catalyst to alter formaldehyde's adsorption strength on it. Manganese carbonate exhibits superior adsorption capability for activated surface hydroxyl groups due to the presence of carbonate. In situ infrared testing revealed that dioxymethylene and formate are primary products resulting from catalytic oxidation of formaldehyde, with catalyst surface oxygen and hydroxyl groups playing a crucial role in intermediate product decomposition and oxidation. This study provides novel insights for designing palladium-based catalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助木木采纳,获得10
1秒前
glanceofwind完成签到 ,获得积分10
1秒前
fffff完成签到,获得积分10
1秒前
所所应助gaochanglu采纳,获得10
1秒前
2秒前
xxlj完成签到,获得积分10
2秒前
聪明的归尘完成签到,获得积分10
2秒前
leiqin发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
咸柴完成签到,获得积分10
4秒前
GG发布了新的文献求助10
4秒前
可靠猎豹完成签到,获得积分10
4秒前
OGLE应助LU采纳,获得20
5秒前
5秒前
5秒前
6秒前
曹梦梦完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
友好太兰完成签到,获得积分10
8秒前
黑米粥发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
slayersqin完成签到 ,获得积分10
10秒前
在水一方应助111采纳,获得10
10秒前
小罗黑的发布了新的文献求助10
11秒前
12秒前
明昼完成签到,获得积分10
12秒前
12秒前
12秒前
多巴胺完成签到,获得积分10
12秒前
13秒前
微笑迎曼发布了新的文献求助30
13秒前
六六发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助10
13秒前
杨锐发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342