催化作用
钯
化学
无机化学
甲醛
吸附
共沉淀
锰
格式化
氧气
催化氧化
有机化学
作者
Xuyu Wang,Jing‐Feng Li,Jun Xing,Manyu Zhang,Rui Liao,Chongtai Wang,Yingjie Hua,Hongbing Ji
标识
DOI:10.1016/j.jcis.2023.11.095
摘要
The elimination of formaldehyde at room temperature holds immense potential for various applications, and the incorporation of a catalyst rich in surface hydroxyl groups and oxygen significantly enhances its catalytic activity towards formaldehyde oxidation. By employing a coprecipitation method, we successfully achieved a palladium domain confined within the manganese carbonate lattice and doped with iron. This synergistic effect between highly dispersed palladium and iron greatly amplifies the concentration of surface hydroxyl groups and oxygen on the catalyst, thereby enabling complete oxidation of formaldehyde at ambient conditions. The proposed method facilitates the formation of domain-limited palladium within the MnCO3 lattice, thereby enhancing the dispersion of palladium and facilitating its partial incorporation into the MnCO3 lattice. Consequently, this approach promotes increased exposure of active sites and enhances the catalyst's capacity for oxygen activation. The co-doping of iron effectively splits the doping sites of palladium to further enhance its dispersion, while simultaneously modifying the electronic modification of the catalyst to alter formaldehyde's adsorption strength on it. Manganese carbonate exhibits superior adsorption capability for activated surface hydroxyl groups due to the presence of carbonate. In situ infrared testing revealed that dioxymethylene and formate are primary products resulting from catalytic oxidation of formaldehyde, with catalyst surface oxygen and hydroxyl groups playing a crucial role in intermediate product decomposition and oxidation. This study provides novel insights for designing palladium-based catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI