Real-time optimization of urban channel gate control based on a segmentation hydraulic model

计算机科学 频道(广播) 分割 点(几何) 水力学 最优化问题 人工智能 工程类 算法 数学 几何学 计算机网络 航空航天工程
作者
Lína Zhang,Chao Wang,Yonghong Yu,Cuncun Duan,Xiaohui Lei,Bin Chen,Hao Wang,Ruizhi Zhang,Youqing Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:625: 130029-130029
标识
DOI:10.1016/j.jhydrol.2023.130029
摘要

With the urban water resources becoming increasingly scarce, the optimal control engineering has emerged as a promising approach to improve the efficiency of water use in the environment. A hydraulic model is capable of accurately modeling and predicting the complex hydrodynamic processes occurring within a channel. However, its optimization and simulation time are often prolonged by the complexity of the channel system, resulting in poor real-time performance. This study presents a segmented hydraulic real-time optimization approach that combines rule-based simulation (RS) with real-time optimization (RTO). The aim of the proposed method is to reduce hydraulic model complexity and improve optimization time by dividing the full hydraulic model (FHM) into optimized segmented hydraulic model (SHMO) and non-optimized segmented hydraulic model (SHMN). The approach presents two main improvements: (1) a segmentation point recognition method based on RS is used to obtain SHMO from the FHM; and (2) a segmented optimization framework is employed to enable RTO based on SHMO. We demonstrate the effectiveness of the approach using a case study of China's Qing River. The results indicate that FHM can be successfully divided into SHMO and SHMN with similar simulation effect (R > 0.88 and RMSE < 0.1) by using the segmentation point recognition method, and the segmented hydraulic real-time optimization approach can reduce optimization time (average 68%) of hydraulics model. The case study indicated that the proposed method is a computationally efficient and feasible approach for real-time regulation of urban channel gate control based on hydraulic model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
Mic应助科研通管家采纳,获得10
1秒前
1秒前
we1发布了新的文献求助10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
顾矜应助A132采纳,获得10
1秒前
1秒前
1秒前
CipherSage应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
2秒前
烟雨夕阳发布了新的文献求助10
2秒前
机智苗应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
Sylvia完成签到,获得积分10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
无花果应助ZDSHI采纳,获得30
3秒前
研友_VZG7GZ应助沙漠采纳,获得10
4秒前
FashionBoy应助Kate采纳,获得10
4秒前
Chen0710发布了新的文献求助10
4秒前
张平发布了新的文献求助10
4秒前
swjs08完成签到,获得积分10
4秒前
ddjl发布了新的文献求助30
5秒前
小鱼努力学习完成签到,获得积分10
5秒前
Q_123完成签到,获得积分20
6秒前
ssch197完成签到 ,获得积分10
6秒前
Lynette完成签到,获得积分20
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328