Real-time optimization of urban channel gate control based on a segmentation hydraulic model

计算机科学 频道(广播) 分割 点(几何) 水力学 最优化问题 人工智能 工程类 算法 数学 几何学 计算机网络 航空航天工程
作者
Lína Zhang,Chao Wang,Yonghong Yu,Cuncun Duan,Xiaohui Lei,Bin Chen,Hao Wang,Ruizhi Zhang,Youqing Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:625: 130029-130029
标识
DOI:10.1016/j.jhydrol.2023.130029
摘要

With the urban water resources becoming increasingly scarce, the optimal control engineering has emerged as a promising approach to improve the efficiency of water use in the environment. A hydraulic model is capable of accurately modeling and predicting the complex hydrodynamic processes occurring within a channel. However, its optimization and simulation time are often prolonged by the complexity of the channel system, resulting in poor real-time performance. This study presents a segmented hydraulic real-time optimization approach that combines rule-based simulation (RS) with real-time optimization (RTO). The aim of the proposed method is to reduce hydraulic model complexity and improve optimization time by dividing the full hydraulic model (FHM) into optimized segmented hydraulic model (SHMO) and non-optimized segmented hydraulic model (SHMN). The approach presents two main improvements: (1) a segmentation point recognition method based on RS is used to obtain SHMO from the FHM; and (2) a segmented optimization framework is employed to enable RTO based on SHMO. We demonstrate the effectiveness of the approach using a case study of China's Qing River. The results indicate that FHM can be successfully divided into SHMO and SHMN with similar simulation effect (R > 0.88 and RMSE < 0.1) by using the segmentation point recognition method, and the segmented hydraulic real-time optimization approach can reduce optimization time (average 68%) of hydraulics model. The case study indicated that the proposed method is a computationally efficient and feasible approach for real-time regulation of urban channel gate control based on hydraulic model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明的破茧完成签到,获得积分10
1秒前
1秒前
liuhua完成签到,获得积分10
1秒前
馅饼完成签到,获得积分10
2秒前
嗯呢完成签到 ,获得积分10
3秒前
5秒前
zkwww完成签到 ,获得积分10
5秒前
5秒前
研友_Ze2X08发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
xyy完成签到,获得积分10
9秒前
tuanheqi完成签到,获得积分0
10秒前
11秒前
共享精神应助李哈哈采纳,获得10
11秒前
Mr贱包子发布了新的文献求助10
12秒前
rui完成签到 ,获得积分10
12秒前
13秒前
小金星星完成签到 ,获得积分10
13秒前
大翟发布了新的文献求助10
14秒前
小二郎应助高兴断秋采纳,获得10
15秒前
16秒前
17秒前
鱼七完成签到,获得积分10
20秒前
香蕉觅云应助Mr贱包子采纳,获得10
20秒前
龙卷风完成签到,获得积分10
20秒前
22秒前
22秒前
数学情缘完成签到,获得积分10
23秒前
李哈哈发布了新的文献求助10
23秒前
led完成签到,获得积分10
24秒前
橘子屿布丁完成签到,获得积分10
24秒前
ivy完成签到 ,获得积分10
24秒前
杜华詹发布了新的文献求助80
24秒前
莫离完成签到,获得积分10
25秒前
希望天下0贩的0应助KY2022采纳,获得10
25秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464176
求助须知:如何正确求助?哪些是违规求助? 3057496
关于积分的说明 9057440
捐赠科研通 2747573
什么是DOI,文献DOI怎么找? 1507413
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696068