Generative adversarial nets for unsupervised outlier detection

异常检测 离群值 自编码 计算机科学 人工智能 模式识别(心理学) 航程(航空) 发电机(电路理论) 对象(语法) 生成语法 数据挖掘 深度学习 功率(物理) 材料科学 物理 量子力学 复合材料
作者
Xusheng Du,Jiaying Chen,Jiong Yu,Li Shu,Qiyin Tan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121161-121161 被引量:28
标识
DOI:10.1016/j.eswa.2023.121161
摘要

Outlier detection, also known as anomaly detection, has been a persistent and active research area for decades due to its wide range of applications in various fields. Many well-established methods have difficulty fitting the distribution of high-dimensional and complex data, making it difficult to detect outliers that have a low degree of deviation. To address this problem, we combine the distribution fitting capability of generative adversarial nets (GANs) with the specificity of the outlier detection problem and propose a GAN-based unsupervised outlier detection (GUOD) method. In a real dataset mixed with normal objects and outliers, the generator of GANs prefers to fit the distribution of the majority of normal objects to minimize the error; as a result, the generated fake data can be used as an augmentation of normal objects. Next, fake “normal objects” are used to train the autoencoder. Finally, the real data are fed into the autoencoder for one forward propagation, and the reconstruction error of the object is used as its own outlier factor. The top-n objects with the largest reconstruction errors are considered outliers. Extensive experiments are conducted on eight real-world datasets, and the results show that the GUOD method performs better than ten other state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫莘梓完成签到 ,获得积分10
刚刚
1秒前
2秒前
张继铎完成签到,获得积分10
2秒前
甜甜谷波发布了新的文献求助10
2秒前
lrsabrina发布了新的文献求助10
2秒前
2秒前
Rollei应助科研通管家采纳,获得10
3秒前
Rollei应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
Rollei应助科研通管家采纳,获得10
4秒前
Rollei应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
幸运的果子狸完成签到,获得积分10
4秒前
科研通AI2S应助小飞子采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
Rollei应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734444
求助须知:如何正确求助?哪些是违规求助? 5354521
关于积分的说明 15327063
捐赠科研通 4879158
什么是DOI,文献DOI怎么找? 2621708
邀请新用户注册赠送积分活动 1570833
关于科研通互助平台的介绍 1527681