亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative adversarial nets for unsupervised outlier detection

异常检测 离群值 自编码 计算机科学 人工智能 模式识别(心理学) 航程(航空) 发电机(电路理论) 对象(语法) 生成语法 数据挖掘 深度学习 功率(物理) 材料科学 物理 量子力学 复合材料
作者
Xusheng Du,Jiaying Chen,Jiong Yu,Li Shu,Qiyin Tan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121161-121161 被引量:28
标识
DOI:10.1016/j.eswa.2023.121161
摘要

Outlier detection, also known as anomaly detection, has been a persistent and active research area for decades due to its wide range of applications in various fields. Many well-established methods have difficulty fitting the distribution of high-dimensional and complex data, making it difficult to detect outliers that have a low degree of deviation. To address this problem, we combine the distribution fitting capability of generative adversarial nets (GANs) with the specificity of the outlier detection problem and propose a GAN-based unsupervised outlier detection (GUOD) method. In a real dataset mixed with normal objects and outliers, the generator of GANs prefers to fit the distribution of the majority of normal objects to minimize the error; as a result, the generated fake data can be used as an augmentation of normal objects. Next, fake “normal objects” are used to train the autoencoder. Finally, the real data are fed into the autoencoder for one forward propagation, and the reconstruction error of the object is used as its own outlier factor. The top-n objects with the largest reconstruction errors are considered outliers. Extensive experiments are conducted on eight real-world datasets, and the results show that the GUOD method performs better than ten other state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
居居侠完成签到 ,获得积分10
1秒前
小样发布了新的文献求助10
3秒前
独特鸽子完成签到 ,获得积分10
9秒前
18秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
小样完成签到 ,获得积分20
21秒前
连安阳完成签到,获得积分10
36秒前
JamesPei应助卡卡采纳,获得10
46秒前
杨秋艳完成签到 ,获得积分20
56秒前
努力的淼淼完成签到 ,获得积分10
1分钟前
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
了晨完成签到 ,获得积分10
1分钟前
simon完成签到 ,获得积分10
1分钟前
李爱国应助lulu采纳,获得10
1分钟前
chengshu666发布了新的文献求助10
1分钟前
玉玉发布了新的文献求助10
1分钟前
如意葶完成签到,获得积分10
1分钟前
1分钟前
lulu发布了新的文献求助10
1分钟前
打打应助玉玉采纳,获得10
2分钟前
chengshu666发布了新的文献求助10
2分钟前
如意葶发布了新的文献求助10
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
2分钟前
卡卡发布了新的文献求助10
2分钟前
溪灵发布了新的文献求助20
2分钟前
啊啊啊完成签到 ,获得积分10
2分钟前
2分钟前
玉玉完成签到 ,获得积分20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
ttkx完成签到,获得积分10
3分钟前
3分钟前
杨光发布了新的文献求助10
3分钟前
江流儿完成签到 ,获得积分10
3分钟前
SciGPT应助杨光采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622199
求助须知:如何正确求助?哪些是违规求助? 4707132
关于积分的说明 14938831
捐赠科研通 4769058
什么是DOI,文献DOI怎么找? 2552198
邀请新用户注册赠送积分活动 1514325
关于科研通互助平台的介绍 1475038