An ultrasensitive method for detecting mutations from short and rare cell-free DNA

分子生物学 聚合酶链反应 数字聚合酶链反应 底漆(化妆品) DNA 生物 遗传学 化学 基因 有机化学
作者
Lin Wang,Zhuang Yu,Yue Yu,Zhiwei Guo,Qiaomei Guo,Lihua Qiao,Xueqing Wang,Xiaohui Liang,Pengpeng Zhang,Qifan Li,Chenjun Huang,Rong Cong,Yinghui Li,Bin Che,Huihui Xiong,Guomin Lin,Mingming Rao,Rongjun Hu,Wei Wang,Guanhu Yang,Jiatao Lou
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:238: 115548-115548 被引量:3
标识
DOI:10.1016/j.bios.2023.115548
摘要

Circulating tumor DNA (ctDNA) was short and rare, making the detection performance of the current targeted sequencing methods unsatisfying. We developed the One-PrimER Amplification (OPERA) system and examined its performance in detecting mutations of low variant allelic frequency (VAF) in various samples with short-sized DNA fragments. In cell line-derived samples containing sonication-sheared DNA fragments with 50-150 bp, OPERA was capable of detecting mutations as low as 0.0025% VAF, while CAPP-Seq only detected mutations of >0.03% VAF. Both single nucleotide variant and insertion/deletion can be detected by OPERA. In synthetic fragments as short as 80 bp with low VAF (0.03%-0.1%), the detection sensitivity of OPERA was significantly higher compared to that of droplet digital polymerase chain reaction. The error rate was 5.9×10-5 errors per base after de-duplication in plasma samples collected from healthy volunteers. By suppressing "single-strand errors", the error rate can be further lowered by >5 folds in EGFR T790M hotspot. In plasma samples collected from lung cancer patients, OPERA detected mutations in 57.1% stage I patients with 100% specificity and achieved a sensitivity of 30.0% in patients with tumor volume of less than 1 cm3. OPERA can effectively detect mutations in rare and highly-fragmented DNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SV发布了新的文献求助10
刚刚
1秒前
12发布了新的文献求助10
1秒前
JamesPei应助化学狗采纳,获得10
1秒前
胡图图发布了新的文献求助10
1秒前
2秒前
xm完成签到,获得积分10
3秒前
谦让的含海完成签到,获得积分10
3秒前
所所应助包容的剑采纳,获得10
3秒前
3秒前
4秒前
lynn_zhang发布了新的文献求助10
4秒前
5秒前
xh发布了新的文献求助10
5秒前
所所应助luoshi采纳,获得10
5秒前
飞龙在天完成签到 ,获得积分10
5秒前
深爱不疑完成签到,获得积分10
6秒前
知识四面八方来完成签到 ,获得积分10
6秒前
我就是我完成签到,获得积分10
6秒前
6秒前
6秒前
heart完成签到,获得积分10
6秒前
keroro发布了新的文献求助10
7秒前
8秒前
pzc发布了新的文献求助10
8秒前
深爱不疑发布了新的文献求助10
9秒前
jennie完成签到 ,获得积分10
9秒前
徐徐发布了新的文献求助80
9秒前
不信慕斯完成签到,获得积分10
9秒前
Jokeypu完成签到,获得积分10
9秒前
gnr2000发布了新的文献求助30
10秒前
10秒前
song99完成签到,获得积分10
10秒前
清醒的ZY发布了新的文献求助50
10秒前
二小发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
澹台灭明发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762