Mineral identification based on natural feature-oriented image processing and multi-label image classification

计算机科学 人工智能 鉴定(生物学) 模式识别(心理学) 特征提取 数据挖掘 机器学习 生物 植物
作者
Qi Gao,Teng Long,Zhangbing Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122111-122111 被引量:2
标识
DOI:10.1016/j.eswa.2023.122111
摘要

Artificial intelligence (AI) technology has significant potential in Earth sciences, particularly in mineral identification for industrial exploration, geological mapping, and archaeological research. However, traditional methods are time-consuming, expensive, and complex. And existing mineral identification methods based on mineral photos face several critical challenges, including lack of consideration for natural image features captured in real environments, limitations of single-label classification which does not align with multi-mineral occurrences in nature, and growing computational complexity as the number of identifiable mineral labels increases. Therefore, this paper proposes an efficient mineral identification model based on multi-label image classification, focusing on natural environmental features. First, realistic feature datasets are created by simulating mineral photos in real environments. Then, the model uses the query-label (Query2Label) framework, with MaxViT-T (Multi-Axis Vision Transformer-Tiny) as the feature extraction network and the asymmetric loss function. Knowledge distillation is employed to improve identification accuracy while reducing computational complexity. The proposed model achieves an impressive average identification accuracy of 84.74% on a dataset of 495,756 mineral photos, surpassing existing models like ResNet-101, ML-GCN (Multi-Label Graph Convolutional Network), and SRN (Spatial Regularization Net). It maintains a lower parameter count and computational complexity. In the end, ablation experiments demonstrate the effectiveness of each optimization scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝板栗发布了新的文献求助20
1秒前
2秒前
周周发布了新的文献求助10
2秒前
4秒前
笃定完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
9秒前
文艺的筮完成签到 ,获得积分10
10秒前
chenchenchen发布了新的文献求助10
11秒前
CipherSage应助Zoeyz采纳,获得10
11秒前
奔奔发布了新的文献求助10
11秒前
cocolu应助传统的鹏涛采纳,获得10
13秒前
16秒前
小葵发布了新的文献求助10
16秒前
18秒前
上官若男应助Li采纳,获得10
20秒前
chenchenchen发布了新的文献求助10
20秒前
在水一方应助Soso采纳,获得10
20秒前
科目三应助liuyan采纳,获得10
22秒前
23秒前
李健应助乐观的中心采纳,获得10
23秒前
sakana完成签到,获得积分20
23秒前
shinnosuke完成签到,获得积分10
24秒前
24秒前
慕青应助Voloid采纳,获得10
26秒前
wade2016发布了新的文献求助10
28秒前
wanci应助大脑洞少年采纳,获得10
29秒前
jiaoshaa完成签到,获得积分10
31秒前
32秒前
CXS完成签到,获得积分10
33秒前
榕树下完成签到,获得积分10
34秒前
桃大屁发布了新的文献求助10
34秒前
珈小羽完成签到,获得积分10
37秒前
37秒前
37秒前
jiaoshaa发布了新的文献求助10
39秒前
39秒前
40秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613