Mineral identification based on natural feature-oriented image processing and multi-label image classification

计算机科学 人工智能 鉴定(生物学) 模式识别(心理学) 特征提取 数据挖掘 机器学习 植物 生物
作者
Qi Gao,Teng Long,Zhangbing Zhou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122111-122111 被引量:2
标识
DOI:10.1016/j.eswa.2023.122111
摘要

Artificial intelligence (AI) technology has significant potential in Earth sciences, particularly in mineral identification for industrial exploration, geological mapping, and archaeological research. However, traditional methods are time-consuming, expensive, and complex. And existing mineral identification methods based on mineral photos face several critical challenges, including lack of consideration for natural image features captured in real environments, limitations of single-label classification which does not align with multi-mineral occurrences in nature, and growing computational complexity as the number of identifiable mineral labels increases. Therefore, this paper proposes an efficient mineral identification model based on multi-label image classification, focusing on natural environmental features. First, realistic feature datasets are created by simulating mineral photos in real environments. Then, the model uses the query-label (Query2Label) framework, with MaxViT-T (Multi-Axis Vision Transformer-Tiny) as the feature extraction network and the asymmetric loss function. Knowledge distillation is employed to improve identification accuracy while reducing computational complexity. The proposed model achieves an impressive average identification accuracy of 84.74% on a dataset of 495,756 mineral photos, surpassing existing models like ResNet-101, ML-GCN (Multi-Label Graph Convolutional Network), and SRN (Spatial Regularization Net). It maintains a lower parameter count and computational complexity. In the end, ablation experiments demonstrate the effectiveness of each optimization scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助欣慰的星月采纳,获得10
刚刚
1秒前
1秒前
qqwrv发布了新的文献求助10
2秒前
朴实山兰发布了新的文献求助10
2秒前
Mark完成签到,获得积分10
4秒前
6秒前
彭于晏应助银河打工人采纳,获得10
6秒前
Dasha完成签到,获得积分10
6秒前
果实发布了新的文献求助10
7秒前
CipherSage应助something采纳,获得10
8秒前
9秒前
ELend完成签到,获得积分10
9秒前
10秒前
欧阳发布了新的文献求助10
10秒前
潼熙甄完成签到 ,获得积分10
10秒前
10秒前
12秒前
12秒前
13秒前
漾漾发布了新的文献求助10
13秒前
qiuqiu完成签到 ,获得积分10
13秒前
tubby发布了新的文献求助10
15秒前
15秒前
15秒前
颜又菱发布了新的文献求助10
17秒前
18秒前
汉堡包应助漾漾采纳,获得10
18秒前
z_king_d_23发布了新的文献求助10
18秒前
舒淇发布了新的文献求助10
19秒前
99完成签到,获得积分10
19秒前
热心市民小红花应助博修采纳,获得10
19秒前
20秒前
研友_LpAljn完成签到,获得积分10
20秒前
李健应助何垠禹采纳,获得30
21秒前
芽芽豆完成签到 ,获得积分10
22秒前
22秒前
沧笙踏歌应助司徒无剑采纳,获得10
23秒前
情怀应助z_king_d_23采纳,获得10
23秒前
zhang发布了新的文献求助10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149