Machine Learning for Heavy Metal Removal from Water: Recent Advances and Challenges

计算机科学 实施 生物炭 数据科学 工程类 废物管理 软件工程 热解
作者
Xiangzhou Yuan,Jie Li,Juin Yau Lim,Ashkan Zolfaghari,Daniel S. Alessi,Yin Wang,Xiaonan Wang,Yong Sik Ok
出处
期刊:ACS ES&T water [American Chemical Society]
卷期号:4 (3): 820-836 被引量:6
标识
DOI:10.1021/acsestwater.3c00215
摘要

Research on the removal of heavy metals (HMs) from contaminated waters, aiming at ensuring the safety of water bodies, has shifted from direct experimental tests to machine learning (ML)-aided investigations. This approach offers advantages such as reduced time and labor as well as deeper insights into HM removal behaviors. Recent advancements in ML-aided HM removal from water present an opportunity to optimize physiochemical processes through data-driven approaches, suggesting that biochar-based HM-removal systems can be successfully modeled and predicted by ML algorithms. This review encompasses various implementations of ML algorithms covering different stages of work including data preparation, ML model building, and postanalysis data interpretation of HM removal from contaminated waters. Several major challenges, including limitations in data availability, data formatting inconsistencies, and data collection inefficiencies, are emphasized in this review. To address these challenges, we advocate for both centralized and decentralized data sharing methodologies to streamline data acquisition, which is urgently needed to accelerate ML-guided strategies for the removal of HMs from contaminated waters. Investigations on ML-based predictive models and model-based feature analyses have been primarily performed for HM removal from contaminated waters; however, this review highlights model-guided practices as a powerful goal-oriented reverse engineering approach, which is beneficial to revealing the underlying relationships between biochar properties and HM removal behaviors. This review also discusses potential solutions, including successful demonstrations at the laboratory scale, to address the major limitations, revolutionizing water treatment strategies and providing valuable insights for future ML-based studies. Furthermore, closed-loop ML-based guidelines for HM removal from contaminated waters are beneficial to achieving UN Sustainable Development Goals 6, 14, and 15.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Chien发布了新的文献求助10
刚刚
布丁发布了新的文献求助10
刚刚
1秒前
liuliu发布了新的文献求助30
1秒前
大模型应助TAMIYA采纳,获得10
2秒前
米娅完成签到,获得积分10
2秒前
Wanderer发布了新的文献求助20
3秒前
爆米花应助阿耒采纳,获得10
3秒前
4秒前
踏实乐枫发布了新的文献求助10
4秒前
7444完成签到,获得积分20
4秒前
5秒前
封闭货车发布了新的文献求助10
5秒前
5秒前
Akim应助lele7458采纳,获得10
5秒前
cbbc发布了新的文献求助20
5秒前
xuyi完成签到,获得积分10
6秒前
liuliu完成签到,获得积分10
7秒前
Chien完成签到,获得积分10
7秒前
WXHL发布了新的文献求助30
8秒前
退而求其次完成签到,获得积分10
8秒前
8秒前
搜集达人应助李谢谢采纳,获得30
8秒前
9秒前
柔弱熊猫完成签到 ,获得积分10
9秒前
小黑黑发布了新的文献求助10
10秒前
10秒前
Coke发布了新的文献求助10
11秒前
点点完成签到 ,获得积分10
11秒前
小二郎应助when采纳,获得10
12秒前
CodeCraft应助when采纳,获得10
12秒前
12秒前
气味儿若发布了新的文献求助10
12秒前
丘比特应助乐乐采纳,获得10
12秒前
BENpao123完成签到 ,获得积分10
13秒前
mi完成签到,获得积分10
13秒前
Ava应助小路采纳,获得10
14秒前
蜘蛛道理完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919