亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Full-process electric vehicles battery state of health estimation based on Informer novel model

稳健性(进化) 荷电状态 健康状况 线性化 工程类 计算机科学 电动汽车 电池(电) 非线性系统 可靠性工程 功率(物理) 生物化学 量子力学 基因 物理 化学
作者
Zhixia He,Xiaojuan Ni,Chaofeng Pan,Tianjun Zhou,Sheng Han
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108626-108626 被引量:7
标识
DOI:10.1016/j.est.2023.108626
摘要

Accurately estimating state of health (SOH) of the power battery, as the core component of electric vehicles (EVs), is of great significance to the safety of EVs and the sustainable development of energy. Given the difficulty in measuring the capacity of lithium-ion batteries (LIBs) during vehicle operation and the linearization of prediction caused by not considering the phenomenon of capacity regeneration, a novel SOH estimation framework based on Informer and the entire charging and discharging process is proposed, which can be applied to the entire life cycle of power batteries in actual complex scenarios. In this study, the charge-discharge capacity is reanalyzed based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to obtain a nonlinear representation of the capacity. User behavior characteristics based on frequency and hourly meteorological data were extracted as health indicators (HIs) of LIBs. To integrate charge-discharge and meteorological data at different time scales, multivariate statistical data were resampled. The global dependency between HIs and SOH of the model input was learned by the Informer network. The results show that Informer networks outperform the cyclic structure-based model in prediction accuracy and robustness across different data distributions, and have great promise for state estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
19秒前
32秒前
38秒前
39秒前
NuLi发布了新的文献求助10
45秒前
jokerhoney完成签到,获得积分10
52秒前
1分钟前
Youlu发布了新的文献求助10
1分钟前
physicalproblem完成签到,获得积分10
1分钟前
1分钟前
英姑应助Youlu采纳,获得10
1分钟前
1分钟前
酷波er应助harrywoo采纳,获得30
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
harrywoo发布了新的文献求助30
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Youlu发布了新的文献求助10
4分钟前
4分钟前
4分钟前
wx完成签到 ,获得积分10
4分钟前
4分钟前
小马甲应助Youlu采纳,获得10
4分钟前
4分钟前
4分钟前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349923
求助须知:如何正确求助?哪些是违规求助? 2975828
关于积分的说明 8671608
捐赠科研通 2656867
什么是DOI,文献DOI怎么找? 1454817
科研通“疑难数据库(出版商)”最低求助积分说明 673473
邀请新用户注册赠送积分活动 663949