亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Full-process electric vehicles battery state of health estimation based on Informer novel model

稳健性(进化) 荷电状态 健康状况 线性化 工程类 计算机科学 电动汽车 电池(电) 非线性系统 功率(物理) 生物化学 量子力学 基因 物理 化学
作者
Zhigang He,Xianggan Ni,Chaofeng Pan,Shuai Hu,Shaohua Han
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:72: 108626-108626 被引量:18
标识
DOI:10.1016/j.est.2023.108626
摘要

Accurately estimating state of health (SOH) of the power battery, as the core component of electric vehicles (EVs), is of great significance to the safety of EVs and the sustainable development of energy. Given the difficulty in measuring the capacity of lithium-ion batteries (LIBs) during vehicle operation and the linearization of prediction caused by not considering the phenomenon of capacity regeneration, a novel SOH estimation framework based on Informer and the entire charging and discharging process is proposed, which can be applied to the entire life cycle of power batteries in actual complex scenarios. In this study, the charge-discharge capacity is reanalyzed based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to obtain a nonlinear representation of the capacity. User behavior characteristics based on frequency and hourly meteorological data were extracted as health indicators (HIs) of LIBs. To integrate charge-discharge and meteorological data at different time scales, multivariate statistical data were resampled. The global dependency between HIs and SOH of the model input was learned by the Informer network. The results show that Informer networks outperform the cyclic structure-based model in prediction accuracy and robustness across different data distributions, and have great promise for state estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹏笑完成签到,获得积分10
37秒前
37秒前
orixero应助cindy5620采纳,获得10
44秒前
55秒前
雨竹完成签到,获得积分10
55秒前
LX发布了新的文献求助30
56秒前
rain完成签到,获得积分10
57秒前
cindy5620发布了新的文献求助10
59秒前
1分钟前
cindy5620完成签到,获得积分10
1分钟前
1分钟前
嗨害害发布了新的文献求助10
1分钟前
1分钟前
Hvginn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Hvginn完成签到,获得积分10
1分钟前
DF完成签到,获得积分10
2分钟前
激昂的大叔完成签到,获得积分10
2分钟前
2分钟前
明理的以亦应助与水皆水采纳,获得30
2分钟前
DF发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
littleboykk发布了新的文献求助10
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
酷酷的大米完成签到,获得积分10
2分钟前
3分钟前
3分钟前
lihaha发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
研友_VZG7GZ应助Spike采纳,获得10
3分钟前
飞_发布了新的文献求助10
3分钟前
科目三应助lihaha采纳,获得10
3分钟前
桐桐应助糖糖的冰镇啤酒采纳,获得10
3分钟前
AliEmbark完成签到,获得积分10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104710
求助须知:如何正确求助?哪些是违规求助? 4314804
关于积分的说明 13443709
捐赠科研通 4143205
什么是DOI,文献DOI怎么找? 2270173
邀请新用户注册赠送积分活动 1272704
关于科研通互助平台的介绍 1209643