Energy-conserving molecular dynamics is not energy conserving

分子动力学 节能 能量(信号处理) 统计物理学 势能 计算机科学 实现(概率) 能量守恒 质量(理念) 简单(哲学) 物理 经典力学 数学 生态学 量子力学 哲学 认识论 统计 生物
作者
Lina Zhang,Yifan Hou,Fuchun Ge,Pavlo O. Dral
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (35): 23467-23476 被引量:3
标识
DOI:10.1039/d3cp03515h
摘要

Molecular dynamics (MD) is a widely-used tool for simulating the molecular and materials properties. It is a common wisdom that molecular dynamics simulations should obey physical laws and, hence, lots of effort is put into ensuring that molecular dynamics simulations are energy conserving. The emergence of machine learning (ML) potentials for MD leads to a growing realization that monitoring conservation of energy during simulations is of low utility because the dynamics is often unphysically dissociative. Other ML methods for MD are not based on a potential and provide only forces or trajectories which are reasonable but not necessarily energy-conserving. Here we propose to clearly distinguish between the simulation-energy and true-energy conservation and highlight that the simulations should focus on decreasing the degree of true-energy non-conservation. We introduce very simple, new criteria for evaluating the quality of molecular dynamics estimating the degree of true-energy non-conservation and we demonstrate their practical utility on an example of infrared spectra simulations. These criteria are more important and intuitive than simply evaluating the quality of the ML potential energies and forces as is commonly done and can be applied universally, e.g., even for trajectories with unknown or discontinuous potential energy. Such an approach introduces new standards for evaluating MD by focusing on the true-energy conservation and can help in developing more accurate methods for simulating molecular and materials properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
风中的忆灵完成签到,获得积分10
4秒前
5秒前
6秒前
王m完成签到 ,获得积分10
6秒前
6秒前
永毅发布了新的文献求助10
7秒前
852应助cccc采纳,获得10
8秒前
怡然尔白完成签到,获得积分10
8秒前
982289172发布了新的文献求助10
9秒前
高大寒梦发布了新的文献求助10
9秒前
Ayna发布了新的文献求助10
10秒前
嘞是举仔应助soga采纳,获得20
10秒前
小y同学发布了新的文献求助10
10秒前
d叨叨鱼发布了新的文献求助10
12秒前
Chris发布了新的文献求助10
12秒前
科研通AI6应助shaco采纳,获得10
13秒前
13秒前
13秒前
13秒前
clelo完成签到 ,获得积分10
14秒前
烟花应助ppppp采纳,获得10
15秒前
潇潇发布了新的文献求助10
16秒前
18秒前
18秒前
永毅完成签到,获得积分10
18秒前
XXX发布了新的文献求助10
19秒前
美好斓发布了新的文献求助10
19秒前
桐桐应助Chris采纳,获得10
20秒前
桐桐应助ZLB采纳,获得10
20秒前
alan发布了新的文献求助150
20秒前
奥利奥完成签到 ,获得积分10
21秒前
befond关注了科研通微信公众号
22秒前
23秒前
Iris发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
孙元应助4.8采纳,获得10
24秒前
唠叨的导师完成签到,获得积分10
24秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049