Energy-conserving molecular dynamics is not energy conserving

分子动力学 节能 能量(信号处理) 统计物理学 势能 计算机科学 实现(概率) 能量守恒 质量(理念) 简单(哲学) 物理 经典力学 数学 生态学 量子力学 哲学 统计 认识论 生物
作者
Lina Zhang,Yifan Hou,Fuchun Ge,Pavlo O. Dral
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (35): 23467-23476 被引量:3
标识
DOI:10.1039/d3cp03515h
摘要

Molecular dynamics (MD) is a widely-used tool for simulating the molecular and materials properties. It is a common wisdom that molecular dynamics simulations should obey physical laws and, hence, lots of effort is put into ensuring that molecular dynamics simulations are energy conserving. The emergence of machine learning (ML) potentials for MD leads to a growing realization that monitoring conservation of energy during simulations is of low utility because the dynamics is often unphysically dissociative. Other ML methods for MD are not based on a potential and provide only forces or trajectories which are reasonable but not necessarily energy-conserving. Here we propose to clearly distinguish between the simulation-energy and true-energy conservation and highlight that the simulations should focus on decreasing the degree of true-energy non-conservation. We introduce very simple, new criteria for evaluating the quality of molecular dynamics estimating the degree of true-energy non-conservation and we demonstrate their practical utility on an example of infrared spectra simulations. These criteria are more important and intuitive than simply evaluating the quality of the ML potential energies and forces as is commonly done and can be applied universally, e.g., even for trajectories with unknown or discontinuous potential energy. Such an approach introduces new standards for evaluating MD by focusing on the true-energy conservation and can help in developing more accurate methods for simulating molecular and materials properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾光发布了新的文献求助10
刚刚
bkagyin应助星星采纳,获得10
刚刚
mono发布了新的文献求助10
刚刚
航航发布了新的文献求助10
刚刚
什么名字235完成签到,获得积分10
刚刚
安静从筠发布了新的文献求助10
1秒前
领导范儿应助qxm采纳,获得10
1秒前
开心市民完成签到,获得积分10
1秒前
36456657应助小喜采纳,获得10
1秒前
1秒前
科研r完成签到,获得积分10
2秒前
2秒前
Ava应助yh采纳,获得10
3秒前
Nikii发布了新的文献求助10
3秒前
whatever应助guozi采纳,获得20
3秒前
到江南散步完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Hello应助澳澳采纳,获得10
5秒前
6秒前
king发布了新的文献求助20
6秒前
汉堡包应助小蜗采纳,获得10
6秒前
7秒前
7秒前
李琦完成签到 ,获得积分10
8秒前
yuta123发布了新的文献求助10
9秒前
9秒前
junyang发布了新的文献求助10
9秒前
顾矜应助尼康哥采纳,获得10
10秒前
Hello应助朴素的士晋采纳,获得10
10秒前
10秒前
娇气的芷巧完成签到 ,获得积分10
10秒前
彩色如之发布了新的文献求助10
11秒前
Jolin发布了新的文献求助10
11秒前
希望天下0贩的0应助vvA11采纳,获得10
11秒前
苏小狸完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助魔音甜菜采纳,获得10
13秒前
WWX完成签到,获得积分10
14秒前
乐观帅哥完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520