Energy-conserving molecular dynamics is not energy conserving

分子动力学 节能 能量(信号处理) 统计物理学 势能 计算机科学 实现(概率) 能量守恒 质量(理念) 简单(哲学) 物理 经典力学 数学 生态学 量子力学 哲学 认识论 统计 生物
作者
Lina Zhang,Yifan Hou,Fuchun Ge,Pavlo O. Dral
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (35): 23467-23476 被引量:3
标识
DOI:10.1039/d3cp03515h
摘要

Molecular dynamics (MD) is a widely-used tool for simulating the molecular and materials properties. It is a common wisdom that molecular dynamics simulations should obey physical laws and, hence, lots of effort is put into ensuring that molecular dynamics simulations are energy conserving. The emergence of machine learning (ML) potentials for MD leads to a growing realization that monitoring conservation of energy during simulations is of low utility because the dynamics is often unphysically dissociative. Other ML methods for MD are not based on a potential and provide only forces or trajectories which are reasonable but not necessarily energy-conserving. Here we propose to clearly distinguish between the simulation-energy and true-energy conservation and highlight that the simulations should focus on decreasing the degree of true-energy non-conservation. We introduce very simple, new criteria for evaluating the quality of molecular dynamics estimating the degree of true-energy non-conservation and we demonstrate their practical utility on an example of infrared spectra simulations. These criteria are more important and intuitive than simply evaluating the quality of the ML potential energies and forces as is commonly done and can be applied universally, e.g., even for trajectories with unknown or discontinuous potential energy. Such an approach introduces new standards for evaluating MD by focusing on the true-energy conservation and can help in developing more accurate methods for simulating molecular and materials properties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miracle关注了科研通微信公众号
1秒前
2秒前
锦鲤大王完成签到,获得积分20
3秒前
爆米花应助薛定谔的猫采纳,获得10
4秒前
5秒前
6秒前
咩咩要早睡关注了科研通微信公众号
6秒前
咩咩要早睡关注了科研通微信公众号
6秒前
6秒前
锦鲤大王发布了新的文献求助10
7秒前
Gao发布了新的文献求助10
8秒前
亦玉完成签到,获得积分10
8秒前
su完成签到,获得积分10
8秒前
9秒前
10秒前
111关闭了111文献求助
11秒前
量子星尘发布了新的文献求助30
12秒前
西西发布了新的文献求助10
12秒前
小哇发布了新的文献求助10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
叶叶叶完成签到,获得积分10
14秒前
小二郎应助YB96采纳,获得10
14秒前
guagua应助552497采纳,获得10
15秒前
Yyy发布了新的文献求助10
15秒前
16秒前
草莓苹果发布了新的文献求助10
16秒前
XCDF1完成签到,获得积分10
16秒前
感动的怀寒完成签到 ,获得积分10
17秒前
17秒前
Caligiiiii完成签到,获得积分10
17秒前
18秒前
权翼完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
淡然依玉发布了新的文献求助10
23秒前
汉文帝完成签到,获得积分10
24秒前
拼搏松鼠发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720909
求助须知:如何正确求助?哪些是违规求助? 5263062
关于积分的说明 15292658
捐赠科研通 4870174
什么是DOI,文献DOI怎么找? 2615270
邀请新用户注册赠送积分活动 1565197
关于科研通互助平台的介绍 1522273