Energy-conserving molecular dynamics is not energy conserving

分子动力学 节能 能量(信号处理) 统计物理学 势能 计算机科学 实现(概率) 能量守恒 质量(理念) 简单(哲学) 物理 经典力学 数学 生态学 量子力学 哲学 认识论 统计 生物
作者
Lina Zhang,Yifan Hou,Fuchun Ge,Pavlo O. Dral
出处
期刊:Physical Chemistry Chemical Physics [Royal Society of Chemistry]
卷期号:25 (35): 23467-23476 被引量:3
标识
DOI:10.1039/d3cp03515h
摘要

Molecular dynamics (MD) is a widely-used tool for simulating the molecular and materials properties. It is a common wisdom that molecular dynamics simulations should obey physical laws and, hence, lots of effort is put into ensuring that molecular dynamics simulations are energy conserving. The emergence of machine learning (ML) potentials for MD leads to a growing realization that monitoring conservation of energy during simulations is of low utility because the dynamics is often unphysically dissociative. Other ML methods for MD are not based on a potential and provide only forces or trajectories which are reasonable but not necessarily energy-conserving. Here we propose to clearly distinguish between the simulation-energy and true-energy conservation and highlight that the simulations should focus on decreasing the degree of true-energy non-conservation. We introduce very simple, new criteria for evaluating the quality of molecular dynamics estimating the degree of true-energy non-conservation and we demonstrate their practical utility on an example of infrared spectra simulations. These criteria are more important and intuitive than simply evaluating the quality of the ML potential energies and forces as is commonly done and can be applied universally, e.g., even for trajectories with unknown or discontinuous potential energy. Such an approach introduces new standards for evaluating MD by focusing on the true-energy conservation and can help in developing more accurate methods for simulating molecular and materials properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jj7完成签到,获得积分10
3秒前
菲菲发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
8秒前
碧蓝的老鼠完成签到,获得积分20
8秒前
8秒前
9秒前
科目三应助zp采纳,获得10
9秒前
刘鑫东完成签到,获得积分20
9秒前
super发布了新的文献求助30
10秒前
LLC发布了新的文献求助10
10秒前
传奇3应助文静达采纳,获得10
13秒前
JG完成签到 ,获得积分10
13秒前
三三四完成签到,获得积分10
14秒前
iwwwwwn发布了新的文献求助10
14秒前
zqq完成签到,获得积分10
14秒前
Giner发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
16秒前
tree完成签到,获得积分10
18秒前
adeno发布了新的文献求助10
20秒前
21秒前
zyq发布了新的文献求助10
22秒前
22秒前
zheer发布了新的文献求助30
22秒前
22秒前
CC完成签到 ,获得积分10
23秒前
彭于晏应助Natsume采纳,获得10
24秒前
彩色的芝麻完成签到 ,获得积分10
26秒前
26秒前
菲菲完成签到,获得积分20
26秒前
曹志毅发布了新的文献求助10
27秒前
qq完成签到,获得积分10
28秒前
Ail完成签到,获得积分10
31秒前
香蕉觅云应助湛刘佳采纳,获得10
32秒前
嘻嘻哈哈完成签到 ,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783