Integrating street view images and deep learning to explore the association between human perceptions of the built environment and cardiovascular disease in older adults

无聊 感知 疾病 建筑环境 活力 心理干预 情感(语言学) 风险感知 心理健康 联想(心理学) 医学 老年学 心理学 应用心理学 社会心理学 工程类 精神科 病理 哲学 土木工程 神学 沟通 神经科学 心理治疗师
作者
Jiwei Xu,Yaolin Liu,Yanfang Liu,Rui An,Zhaomin Tong
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:338: 116304-116304 被引量:7
标识
DOI:10.1016/j.socscimed.2023.116304
摘要

Understanding how built environment attributes affect health is important. While many studies have explored the objective characteristics of built environments that affect health outcomes, few have examined the role of human perceptions of built environments on physical health. Baidu Street View images and computer vision technological advances have helped researchers overcome the constraints of traditional methods of measuring human perceptions (e.g., these methods are laborious, time-consuming, and costly), allowing for large-scale measurements of human perceptions. This study estimates human perceptions of the built environment (e.g., beauty, boredom, depression, safety, vitality, and wealth) by adopting Baidu Street View images and deep learning algorithms. Negative binomial regression models are employed to analyze the relationship between human perceptions and cardiovascular disease in older adults (e.g., ischemic heart disease and cerebrovascular disease). The results indicate that wealth perception is negatively related to the risk of cardiovascular disease. However, depression and vitality perceptions are positively associated with the risk of cardiovascular disease. Furthermore, we found no relationship between beauty, boredom, safety perceptions, and the risk of cardiovascular disease. Our findings highlight the importance of human perceptions in the development of healthy city planning and facilitate a comprehensive understanding of the relationship between built environment characteristics and health outcomes in older adults. They also demonstrate that street view images have the potential to provide insights into this complicated issue, assisting in the formulation of refined interventions and health policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助北冥有鱼采纳,获得10
1秒前
年幼时完成签到 ,获得积分10
4秒前
19完成签到,获得积分10
4秒前
highmoon完成签到,获得积分10
4秒前
5秒前
lalalala关注了科研通微信公众号
6秒前
7秒前
7秒前
华仔应助雾岛采纳,获得10
7秒前
WX完成签到 ,获得积分10
9秒前
博修发布了新的文献求助10
11秒前
highmoon发布了新的文献求助10
11秒前
LQ发布了新的文献求助10
12秒前
明明鸣完成签到,获得积分10
12秒前
蒋时晏举报似是而非求助涉嫌违规
13秒前
14秒前
iamleopeng应助HZBX采纳,获得10
14秒前
16秒前
竹子完成签到,获得积分10
17秒前
852应助博修采纳,获得10
19秒前
LQ完成签到,获得积分10
19秒前
化学少女发布了新的文献求助10
20秒前
peek1ove发布了新的文献求助10
21秒前
yy完成签到,获得积分10
23秒前
23秒前
24秒前
乐乐应助空格TNT采纳,获得10
24秒前
zfg发布了新的文献求助10
24秒前
田様应助研友_842aln采纳,获得10
24秒前
24秒前
无花果应助合适的金鱼采纳,获得10
25秒前
充电宝应助酷炫贞采纳,获得10
25秒前
Frank完成签到,获得积分10
25秒前
25秒前
笨笨志泽完成签到,获得积分20
26秒前
顾矜应助nuonuoweng采纳,获得10
27秒前
28秒前
G1997完成签到 ,获得积分10
28秒前
包容芯完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271129
求助须知:如何正确求助?哪些是违规求助? 2910337
关于积分的说明 8353816
捐赠科研通 2580862
什么是DOI,文献DOI怎么找? 1403772
科研通“疑难数据库(出版商)”最低求助积分说明 655922
邀请新用户注册赠送积分活动 635344