An attention-based dual-encoding network for fire flame detection using optical remote sensing

计算机科学 特征(语言学) 编码(内存) 特征提取 人工智能 分割 代表(政治) 像素 模式识别(心理学) 光学(聚焦) 特征学习 注意力网络 数据挖掘 哲学 语言学 物理 光学 政治 政治学 法学
作者
Shuyi Kong,Jiahui Deng,Lei Yang,Yanhong Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107238-107238 被引量:4
标识
DOI:10.1016/j.engappai.2023.107238
摘要

Automatic extraction of flame area plays an important role in forest fire detection, which can accurately understand the spatial distribution and development trend of forest fire, so as to effectively realize the protection of forest resources. However, due to the instability and spread of fires, and the complexity of the background, accurate early fire detection is extremely challenging. At the same time, the image pixel proportion of the flame area in early stage is much smaller than that in the background, which causes a serious class imbalance problem. With the fast development of deep learning, some achievements have been made in flame extraction, but there are still some deficiencies in the existing networks, such as limited feature representation, poor feature capturing ability on micro objects, insufficiency processing of local features, etc. This paper proposes an attention-based dual-encoding segmentation network, abbreviated as ADE-Net, for pixelwise early fire detection. To realize strong feature representation, a dual-encoding path, consisting of semantic units and spatial units, is introduced to extract richer features, and an attention fusion module (AFM) is introduced to fully integrate spatial and semantic information and achieve effective feature aggregation. In addition, faced with the class imbalance problem, a multi-attention fusion (MAF) module is introduced to obtain more discriminating features to make the segmentation network to focus on the key pixel areas. Furthermore, a feature enhancement module, named attention-guided enhancement (AGE) module, is proposed to enrich the feature representation of local feature maps. Finally, to realize better multi-scale global feature extraction and fusion, a global context fusion (GCF) module is proposed into the bottleneck layer for multi-scale feature enhancement. Experimental results show that the proposed ADE-Net has a good early fire detection ability from remote sensing images, and it has obtained a competitive advantage compared with advanced segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助惠惠采纳,获得10
1秒前
1秒前
Meowly完成签到,获得积分10
1秒前
2秒前
2秒前
陶醉觅夏发布了新的文献求助10
2秒前
pu完成签到,获得积分10
2秒前
小灵通完成签到,获得积分10
2秒前
给我找发布了新的文献求助10
2秒前
科研通AI2S应助LIn采纳,获得10
3秒前
gaga完成签到,获得积分10
3秒前
_Charmo完成签到,获得积分10
3秒前
Slemon完成签到,获得积分10
3秒前
谦谦姜完成签到,获得积分10
5秒前
6秒前
JINGZHANG发布了新的文献求助10
6秒前
6秒前
归海天与应助糊弄学专家采纳,获得10
6秒前
风中的青完成签到,获得积分10
7秒前
7秒前
7秒前
duxinyue关注了科研通微信公众号
8秒前
超级宇宙二踢脚关注了科研通微信公众号
8秒前
9秒前
9秒前
10秒前
务实盼海发布了新的文献求助10
10秒前
徐徐徐徐发布了新的文献求助10
11秒前
星晴遇见花海完成签到,获得积分10
11秒前
乐乐应助Rrr采纳,获得10
12秒前
难过鸿涛应助srt采纳,获得10
13秒前
14秒前
卡卡发布了新的文献求助10
14秒前
14秒前
16秒前
Jasper应助刘芸芸采纳,获得10
17秒前
m彬m彬完成签到 ,获得积分10
17秒前
18秒前
自信鑫鹏完成签到,获得积分10
18秒前
HYH完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794