An attention-based dual-encoding network for fire flame detection using optical remote sensing

计算机科学 特征(语言学) 编码(内存) 特征提取 人工智能 分割 代表(政治) 像素 模式识别(心理学) 光学(聚焦) 特征学习 注意力网络 数据挖掘 哲学 语言学 物理 光学 政治 政治学 法学
作者
Shuyi Kong,Jiahui Deng,Lei Yang,Yanhong Liu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:127: 107238-107238 被引量:4
标识
DOI:10.1016/j.engappai.2023.107238
摘要

Automatic extraction of flame area plays an important role in forest fire detection, which can accurately understand the spatial distribution and development trend of forest fire, so as to effectively realize the protection of forest resources. However, due to the instability and spread of fires, and the complexity of the background, accurate early fire detection is extremely challenging. At the same time, the image pixel proportion of the flame area in early stage is much smaller than that in the background, which causes a serious class imbalance problem. With the fast development of deep learning, some achievements have been made in flame extraction, but there are still some deficiencies in the existing networks, such as limited feature representation, poor feature capturing ability on micro objects, insufficiency processing of local features, etc. This paper proposes an attention-based dual-encoding segmentation network, abbreviated as ADE-Net, for pixelwise early fire detection. To realize strong feature representation, a dual-encoding path, consisting of semantic units and spatial units, is introduced to extract richer features, and an attention fusion module (AFM) is introduced to fully integrate spatial and semantic information and achieve effective feature aggregation. In addition, faced with the class imbalance problem, a multi-attention fusion (MAF) module is introduced to obtain more discriminating features to make the segmentation network to focus on the key pixel areas. Furthermore, a feature enhancement module, named attention-guided enhancement (AGE) module, is proposed to enrich the feature representation of local feature maps. Finally, to realize better multi-scale global feature extraction and fusion, a global context fusion (GCF) module is proposed into the bottleneck layer for multi-scale feature enhancement. Experimental results show that the proposed ADE-Net has a good early fire detection ability from remote sensing images, and it has obtained a competitive advantage compared with advanced segmentation models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宇琪完成签到,获得积分20
3秒前
李子维完成签到 ,获得积分10
3秒前
砳熠完成签到 ,获得积分10
6秒前
早睡早起完成签到,获得积分10
6秒前
zy完成签到,获得积分10
6秒前
zzx396完成签到,获得积分10
7秒前
8秒前
段仁杰完成签到,获得积分10
11秒前
Anderson123完成签到,获得积分10
12秒前
岁月如酒应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
岁月如酒应助科研通管家采纳,获得10
12秒前
36456657应助科研通管家采纳,获得10
12秒前
12秒前
drbrianlau完成签到,获得积分10
12秒前
Anderson732完成签到,获得积分10
12秒前
墨痕mohen完成签到,获得积分10
12秒前
Muhi完成签到,获得积分10
12秒前
俭朴的发带完成签到,获得积分10
12秒前
13秒前
sb完成签到,获得积分10
17秒前
沐晴完成签到,获得积分10
21秒前
23秒前
syne完成签到,获得积分10
24秒前
明理青寒完成签到,获得积分10
24秒前
OnionJJ完成签到,获得积分10
24秒前
Aliya完成签到 ,获得积分10
27秒前
wusj120发布了新的文献求助10
28秒前
江任意西完成签到 ,获得积分10
35秒前
小西发布了新的文献求助10
37秒前
Ben完成签到,获得积分10
40秒前
江三村完成签到 ,获得积分10
41秒前
欣喜雪晴完成签到 ,获得积分10
42秒前
Lenard Guma完成签到 ,获得积分10
47秒前
49秒前
於伟祺发布了新的文献求助100
51秒前
小志呀完成签到,获得积分10
53秒前
小岛上的赞助滑手完成签到 ,获得积分10
56秒前
英俊的铭应助科研小胖次采纳,获得10
56秒前
Vicky完成签到 ,获得积分10
56秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164885
求助须知:如何正确求助?哪些是违规求助? 2815966
关于积分的说明 7910672
捐赠科研通 2475554
什么是DOI,文献DOI怎么找? 1318268
科研通“疑难数据库(出版商)”最低求助积分说明 632053
版权声明 602336