GRFB-UNet: A new multi-scale attention network with group receptive field block for tactile paving segmentation

分割 计算机科学 人工智能 块(置换群论) 稳健性(进化) 感受野 卷积(计算机科学) 计算机视觉 模式识别(心理学) 人工神经网络 数学 生物化学 化学 几何学 基因
作者
Xingli Zhang,Lei Liang,Shenglu Zhao,Zhihui Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122109-122109 被引量:5
标识
DOI:10.1016/j.eswa.2023.122109
摘要

Tactile paving plays a crucial role in the travel of visually impaired, and assists them to find the way forward. Therefore, it is quite meaningful to identify the regions and trends of tactile paving to support the independent walking of the visually impaired. Visual segmentation technology shows potential to segment the regions of tactile paving, and the shapes of these regions can be used to further check the road trends. To effectively improve the accuracy and robustness of tactile paving segmentation, a novel tactile paving segmentation method that combines UNet network and multi-scale feature extraction is proposed in this work. The structure of group receptive field block (GRFB) has been embedded into the basic UNet network to obtain multi-scale receptive fields of the tactile paving. Aiming to enhance the computational efficiency, the strategy of group convolution is adopted to combine with GRFB module. Meanwhile, small-scale convolution is used after each group convolution to achieve cross-channel information interaction and integration, aiming to extract more abundant high-level features. In this paper, we have constructed the dataset of tactile paving in various scenarios, and labeled them for experimental evaluation. Furthermore, a comparative analysis with the typical networks and structure modules has been demonstrated in details. The experimental results show that the proposed network achieves the best overall performance among those compared networks on tactile paving segmentation, and provides a valuable reference for the segmentation of tactile paving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今夜不设防完成签到,获得积分10
1秒前
李健应助木子采纳,获得10
2秒前
爆米花发布了新的文献求助10
2秒前
2秒前
2秒前
可靠的老鼠完成签到,获得积分10
3秒前
落寞依珊应助master-f采纳,获得10
3秒前
wbh发布了新的文献求助10
4秒前
田様应助hu970采纳,获得10
4秒前
科研通AI2S应助钟是一梦采纳,获得10
4秒前
zzz完成签到,获得积分20
5秒前
好玩和有趣完成签到,获得积分10
5秒前
脂蛋白抗原完成签到,获得积分10
5秒前
5秒前
5秒前
虫虫完成签到,获得积分10
5秒前
6秒前
6秒前
喜悦的向珊完成签到,获得积分10
6秒前
6秒前
科研狗发布了新的文献求助10
6秒前
清爽绿凝发布了新的文献求助10
6秒前
6秒前
大个应助佰斯特威采纳,获得10
7秒前
JingP完成签到,获得积分10
8秒前
赘婿应助yuyu采纳,获得10
8秒前
蔡翌文完成签到 ,获得积分10
8秒前
crescendo完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
plumcute完成签到,获得积分10
9秒前
cybbbbbb发布了新的文献求助10
10秒前
名丿完成签到,获得积分10
10秒前
10秒前
网上飞完成签到,获得积分10
10秒前
小香草发布了新的文献求助10
10秒前
xiaoziyi666发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740