GRFB-UNet: A new multi-scale attention network with group receptive field block for tactile paving segmentation

分割 计算机科学 人工智能 块(置换群论) 稳健性(进化) 感受野 卷积(计算机科学) 计算机视觉 模式识别(心理学) 人工神经网络 数学 几何学 生物化学 基因 化学
作者
Xingli Zhang,Lei Liang,Shenglu Zhao,Zhihui Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122109-122109 被引量:5
标识
DOI:10.1016/j.eswa.2023.122109
摘要

Tactile paving plays a crucial role in the travel of visually impaired, and assists them to find the way forward. Therefore, it is quite meaningful to identify the regions and trends of tactile paving to support the independent walking of the visually impaired. Visual segmentation technology shows potential to segment the regions of tactile paving, and the shapes of these regions can be used to further check the road trends. To effectively improve the accuracy and robustness of tactile paving segmentation, a novel tactile paving segmentation method that combines UNet network and multi-scale feature extraction is proposed in this work. The structure of group receptive field block (GRFB) has been embedded into the basic UNet network to obtain multi-scale receptive fields of the tactile paving. Aiming to enhance the computational efficiency, the strategy of group convolution is adopted to combine with GRFB module. Meanwhile, small-scale convolution is used after each group convolution to achieve cross-channel information interaction and integration, aiming to extract more abundant high-level features. In this paper, we have constructed the dataset of tactile paving in various scenarios, and labeled them for experimental evaluation. Furthermore, a comparative analysis with the typical networks and structure modules has been demonstrated in details. The experimental results show that the proposed network achieves the best overall performance among those compared networks on tactile paving segmentation, and provides a valuable reference for the segmentation of tactile paving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助沙丁鹌鹑采纳,获得10
1秒前
许七安发布了新的文献求助10
1秒前
Billy应助lili采纳,获得30
3秒前
6秒前
贝贝发布了新的文献求助10
8秒前
在水一方应助天润佳苑采纳,获得10
8秒前
8秒前
12秒前
酷波er应助耍酷的小海豚采纳,获得30
12秒前
12秒前
自信白梦完成签到,获得积分20
12秒前
思源应助ordin采纳,获得10
13秒前
斯文败类应助Jason采纳,获得10
14秒前
星有灵溪发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
sERING发布了新的文献求助10
17秒前
沙丁鹌鹑发布了新的文献求助10
17秒前
一静齐眉完成签到,获得积分20
18秒前
CodeCraft应助steforeca采纳,获得10
18秒前
18秒前
19秒前
20秒前
21秒前
田様应助沙丁鹌鹑采纳,获得10
22秒前
嗯哼应助兆渊采纳,获得10
22秒前
黄小慧发布了新的文献求助10
22秒前
kuzzi发布了新的文献求助30
23秒前
星有灵溪完成签到,获得积分10
23秒前
彭于晏应助愛迪采纳,获得10
23秒前
24秒前
hzb发布了新的文献求助10
24秒前
Arjun应助香蕉君达采纳,获得50
25秒前
可靠的大美完成签到,获得积分10
25秒前
干净问筠完成签到,获得积分10
26秒前
ordin发布了新的文献求助10
26秒前
27秒前
不配.应助科研通管家采纳,获得30
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248513
求助须知:如何正确求助?哪些是违规求助? 2891903
关于积分的说明 8269128
捐赠科研通 2559920
什么是DOI,文献DOI怎么找? 1388768
科研通“疑难数据库(出版商)”最低求助积分说明 650897
邀请新用户注册赠送积分活动 627798