Surface Defect Detection for No-Service Rails With Skeleton-Aware Accurate and Fast Network

RGB颜色模型 人工智能 计算机科学 计算机视觉 目标检测 模式识别(心理学) 算法
作者
Liming Huang,Aojun Gong
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 4571-4581 被引量:3
标识
DOI:10.1109/tii.2023.3327341
摘要

Vision-based surface defect detection for no-service rails provides a fast and effective way to monitor product quality. However, most of the existing surface defect detection algorithms ${1)}$ prioritize enhancing detection accuracy at the expense of processing speed and ${2)}$ lack compatibility with various input image types [RGB images or RGB-depth (RGBD) images]. To address these issues, we propose a skeleton-aware accurate and fast network for pixelwise surface defect detection. The skeleton is first used in defect detection tasks to aid in locating defects and to guide the growth of more accurate defect predictions by utilizing its continuity. In addition, a simple and efficient feature fusion module, information prominence fusion, is proposed for cross-layer feature representation. A compatibility module, depth-aware fusion, is devised to introduce and integrate depth information. Experiments have proven that our network can achieve excellent detection results while its detection speed can reach 537.2 fps for RGB detection and 423.8 fps for RGBD detection at 20 input batch sizes. Generalizability experiments verify that our network still performs competitively on the surface defect detection of strip steel and salient object detection of RGB and RGBD natural images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助ww采纳,获得10
刚刚
1秒前
ttttttuu完成签到,获得积分10
1秒前
2秒前
刘涵完成签到 ,获得积分10
2秒前
小马甲应助zhui采纳,获得10
2秒前
10完成签到,获得积分10
2秒前
2秒前
2秒前
Rainielove0215完成签到,获得积分0
3秒前
zz完成签到,获得积分10
4秒前
4秒前
kyle完成签到,获得积分10
6秒前
感性的凉面完成签到,获得积分20
6秒前
6秒前
请叫我风吹麦浪应助末岛采纳,获得10
7秒前
Aprial发布了新的文献求助30
7秒前
dd发布了新的文献求助10
7秒前
传奇3应助科研小菜鸟采纳,获得10
7秒前
在水一方应助惠惠采纳,获得10
8秒前
9秒前
冷艳贵公子王少完成签到 ,获得积分10
9秒前
KatzeBaliey完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
zz发布了新的文献求助10
10秒前
10秒前
Twikky发布了新的文献求助10
11秒前
11秒前
小马甲应助芒果采纳,获得10
12秒前
12秒前
心想事成完成签到,获得积分10
14秒前
隐形曼青应助噔噔噔噔采纳,获得10
14秒前
wei发布了新的文献求助10
14秒前
Nature完成签到,获得积分10
14秒前
樱桃苏打水完成签到,获得积分10
15秒前
zhui发布了新的文献求助10
15秒前
金色热浪发布了新的文献求助10
15秒前
pinging应助讲你ing采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794