α-突触核蛋白
抗氧化剂
氧化铈
化学
帕金森病
纳米颗粒
氧化应激
生物物理学
氧化物
生物化学
材料科学
纳米技术
有机化学
疾病
医学
生物
病理
作者
Xiaomei Yao,Yejun Guan,JianLi Wang,Dong Wang
出处
期刊:Heliyon
[Elsevier]
日期:2024-01-01
卷期号:10 (1): e21789-e21789
被引量:2
标识
DOI:10.1016/j.heliyon.2023.e21789
摘要
Parkinson's and Alzheimer's disease is the main cause of dementia, which is associated with the progressive deterioration of the intelligence and senses. Free radicals are created during oxidative stress in cells, which are considered one of the destructive factors in neurodegenerative diseases. In this study, the antifibrillar and antioxidant properties of cerium oxide nanoparticles (CeO2 NPs) were investigated experimentally and theoretically. The CeO2 NPs were synthesized and analyzed to reveal the physicochemical and biological properties. The results showed that the CeO2 NPs have unique properties with potent antioxidant activities. The experimental and computational studies showed that the CeO2 NPs interact with the active site of Alpha-synuclein. The existence of hydrogen bonding between O atoms of CeO2 NPs and N–H of adjacent acid amines and the equilibrium distances were confirmed by 1.751 (Leu100), 1.786 (Gln99) and 2.213 Å (Lys97). The minimum free energy binding of L-DOPA drug (as positive control) and CeO2 NPs were negative, resulting interaction between compounds and protein. As a result, these compounds inhibited Alpha-synuclein protein aggregation. In addition, that CeO2 NPs strongly binds with receptor by relative binding energy as compared with L-DOPA drug. These findings revealed that CeO2 NPs prevent Alpha-synuclein fibrillation and can be applied as nano-drug against the Parkinson's disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI