MSGformer: A multi-scale grid transformer network for 12-lead ECG arrhythmia detection

计算机科学 模式识别(心理学) 人工智能 特征提取 网格 变压器 数据挖掘 波形 比例(比率) 机器学习 电压 工程类 数学 几何学 电气工程 电信 雷达 物理 量子力学
作者
Changqing Ji,Liyong Wang,Jing Qin,Lu Liu,Yue Han,Zumin Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105499-105499 被引量:32
标识
DOI:10.1016/j.bspc.2023.105499
摘要

The electrocardiogram (ECG) is a ubiquitous medical diagnostic tool employed to identify arrhythmias that are characterized by anomalous waveform morphology and erratic intervals. Current ECG analysis methods primarily rely on the feature extraction of single leads or scales, thereby overlooking the critical complementary data obtainable from multiple channels and scales. This paper introduces the Multi-Scale Grid Transformer (MSGformer) network, which extracts spatial features from limb and chest leads and employs a multi-scale grid attention mechanism to capture temporal features. The self-attention mechanism-based multi-lead feature fusion approach leverages diverse leads’ perspectives to reflect each lead’s heart’s comprehensive state and extract unique essential features. Furthermore, MSGformer incorporates a multi-scale grid attention feature extraction strategy that employs multi-head and multi-scale attention mechanisms to extract multi-scale temporal features from two dimensions. The MSGformer network combines these feature extraction strategies, resulting in simultaneous capturing of morphological characteristics across different leads and temporal characteristics within the same lead in ECG. This integration facilitates the effective detection of morphological abnormalities and erratic intervals in cardiac electrical activity. Utilizing the publicly available 2018 China Physiological Signal Challenge (CPSC 2018) and MIT-BIH electrocardiogram datasets, the performance of MSGformer was evaluated and compared to existing ECG classification models. Experimental results demonstrate that MSGformer achieved an F1 score of 0.86, while on the MIT-BIH dataset, it attained accuracy, sensitivity, and positive predictive value of 99.28%, 97.13%, and 97.87%, respectively, outperforming other current models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我有我风格完成签到 ,获得积分10
1秒前
Dorren完成签到,获得积分10
1秒前
李健应助一二采纳,获得10
2秒前
柳大楚发布了新的文献求助10
2秒前
lingVing瑜完成签到 ,获得积分10
2秒前
研友_nPPzon完成签到,获得积分10
3秒前
c123完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
jeronimo完成签到,获得积分10
6秒前
CHEN完成签到 ,获得积分10
7秒前
阿白完成签到,获得积分10
8秒前
Akim应助柳大楚采纳,获得10
8秒前
煜琪完成签到 ,获得积分10
9秒前
zhengzheng发布了新的文献求助10
9秒前
Zhjie126完成签到,获得积分10
10秒前
abab小王完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助20
12秒前
14秒前
一二发布了新的文献求助10
15秒前
zhengzheng完成签到,获得积分10
16秒前
研友_Lw7OvL完成签到 ,获得积分10
17秒前
李天浩完成签到 ,获得积分10
18秒前
欣慰的紫菜完成签到 ,获得积分10
18秒前
18秒前
HHF完成签到,获得积分10
18秒前
小满完成签到 ,获得积分10
20秒前
明亮谷波发布了新的文献求助10
20秒前
flash完成签到,获得积分10
21秒前
坚强的缘分完成签到,获得积分10
22秒前
Salut完成签到,获得积分10
22秒前
angelinekitty完成签到,获得积分10
23秒前
雲樂完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
开心向真完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
luluyang完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900