MSGformer: A multi-scale grid transformer network for 12-lead ECG arrhythmia detection

计算机科学 模式识别(心理学) 人工智能 特征提取 网格 变压器 数据挖掘 波形 比例(比率) 机器学习 电压 工程类 数学 几何学 电气工程 电信 雷达 物理 量子力学
作者
Changqing Ji,Liyong Wang,Jing Qin,Lu Liu,Yue Han,Zumin Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105499-105499 被引量:32
标识
DOI:10.1016/j.bspc.2023.105499
摘要

The electrocardiogram (ECG) is a ubiquitous medical diagnostic tool employed to identify arrhythmias that are characterized by anomalous waveform morphology and erratic intervals. Current ECG analysis methods primarily rely on the feature extraction of single leads or scales, thereby overlooking the critical complementary data obtainable from multiple channels and scales. This paper introduces the Multi-Scale Grid Transformer (MSGformer) network, which extracts spatial features from limb and chest leads and employs a multi-scale grid attention mechanism to capture temporal features. The self-attention mechanism-based multi-lead feature fusion approach leverages diverse leads’ perspectives to reflect each lead’s heart’s comprehensive state and extract unique essential features. Furthermore, MSGformer incorporates a multi-scale grid attention feature extraction strategy that employs multi-head and multi-scale attention mechanisms to extract multi-scale temporal features from two dimensions. The MSGformer network combines these feature extraction strategies, resulting in simultaneous capturing of morphological characteristics across different leads and temporal characteristics within the same lead in ECG. This integration facilitates the effective detection of morphological abnormalities and erratic intervals in cardiac electrical activity. Utilizing the publicly available 2018 China Physiological Signal Challenge (CPSC 2018) and MIT-BIH electrocardiogram datasets, the performance of MSGformer was evaluated and compared to existing ECG classification models. Experimental results demonstrate that MSGformer achieved an F1 score of 0.86, while on the MIT-BIH dataset, it attained accuracy, sensitivity, and positive predictive value of 99.28%, 97.13%, and 97.87%, respectively, outperforming other current models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz发布了新的文献求助10
刚刚
刚刚
lzx完成签到,获得积分10
1秒前
1秒前
1秒前
谷谷完成签到,获得积分10
2秒前
2秒前
枫asaki发布了新的文献求助10
2秒前
勤奋紫真发布了新的文献求助10
2秒前
清光发布了新的文献求助10
2秒前
yyanxuemin919完成签到,获得积分10
3秒前
灵巧一兰发布了新的文献求助10
3秒前
跳跃的迎荷完成签到 ,获得积分10
3秒前
Zer0完成签到,获得积分10
4秒前
4秒前
4秒前
禛禛发布了新的文献求助10
5秒前
Gtx完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
shaco发布了新的文献求助10
8秒前
我666完成签到,获得积分10
8秒前
yyanxuemin919发布了新的文献求助10
8秒前
yugy发布了新的文献求助10
8秒前
9秒前
RayHey发布了新的文献求助30
9秒前
给我点光环完成签到,获得积分10
9秒前
英俊的铭应助禛禛采纳,获得10
10秒前
10秒前
LTT发布了新的文献求助10
12秒前
慕青应助scz采纳,获得10
12秒前
apt发布了新的文献求助10
12秒前
Archer发布了新的文献求助10
13秒前
爱学数学的数学小白完成签到,获得积分10
13秒前
yyy关闭了yyy文献求助
14秒前
小鱼儿发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581495
求助须知:如何正确求助?哪些是违规求助? 4665821
关于积分的说明 14758879
捐赠科研通 4607710
什么是DOI,文献DOI怎么找? 2528346
邀请新用户注册赠送积分活动 1497608
关于科研通互助平台的介绍 1466507