MSGformer: A multi-scale grid transformer network for 12-lead ECG arrhythmia detection

计算机科学 模式识别(心理学) 人工智能 特征提取 网格 变压器 数据挖掘 波形 比例(比率) 机器学习 电压 工程类 数学 物理 电气工程 电信 量子力学 雷达 几何学
作者
Changqing Ji,Liyong Wang,Jing Qin,Lu Liu,Y. Han,Zumin Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105499-105499 被引量:14
标识
DOI:10.1016/j.bspc.2023.105499
摘要

The electrocardiogram (ECG) is a ubiquitous medical diagnostic tool employed to identify arrhythmias that are characterized by anomalous waveform morphology and erratic intervals. Current ECG analysis methods primarily rely on the feature extraction of single leads or scales, thereby overlooking the critical complementary data obtainable from multiple channels and scales. This paper introduces the Multi-Scale Grid Transformer (MSGformer) network, which extracts spatial features from limb and chest leads and employs a multi-scale grid attention mechanism to capture temporal features. The self-attention mechanism-based multi-lead feature fusion approach leverages diverse leads’ perspectives to reflect each lead’s heart’s comprehensive state and extract unique essential features. Furthermore, MSGformer incorporates a multi-scale grid attention feature extraction strategy that employs multi-head and multi-scale attention mechanisms to extract multi-scale temporal features from two dimensions. The MSGformer network combines these feature extraction strategies, resulting in simultaneous capturing of morphological characteristics across different leads and temporal characteristics within the same lead in ECG. This integration facilitates the effective detection of morphological abnormalities and erratic intervals in cardiac electrical activity. Utilizing the publicly available 2018 China Physiological Signal Challenge (CPSC 2018) and MIT-BIH electrocardiogram datasets, the performance of MSGformer was evaluated and compared to existing ECG classification models. Experimental results demonstrate that MSGformer achieved an F1 score of 0.86, while on the MIT-BIH dataset, it attained accuracy, sensitivity, and positive predictive value of 99.28%, 97.13%, and 97.87%, respectively, outperforming other current models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gsw完成签到,获得积分10
刚刚
1秒前
拾一完成签到,获得积分10
1秒前
1秒前
ReAiLeer发布了新的文献求助10
2秒前
贺雪完成签到,获得积分10
2秒前
Ava应助亓大大采纳,获得10
2秒前
松鼠没有三只完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
巴图鲁发布了新的文献求助10
4秒前
Akim应助炽源采纳,获得10
4秒前
Along发布了新的文献求助10
6秒前
搜集达人应助you采纳,获得10
7秒前
淡然丹雪完成签到,获得积分10
7秒前
丢丢发布了新的文献求助10
7秒前
kiyo发布了新的文献求助30
8秒前
拉布拉卡发布了新的文献求助10
8秒前
马季发布了新的文献求助10
10秒前
10秒前
俊逸的蜜蜂应助张惠采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
Orange应助栗子的小母牛采纳,获得10
13秒前
甜滋滋发布了新的文献求助10
13秒前
16秒前
16秒前
王自信发布了新的文献求助10
16秒前
杨小野完成签到,获得积分10
16秒前
17秒前
专注的小松鼠完成签到,获得积分10
17秒前
17秒前
cd完成签到,获得积分10
17秒前
日月星陈发布了新的文献求助10
18秒前
18秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312412
求助须知:如何正确求助?哪些是违规求助? 2945030
关于积分的说明 8522726
捐赠科研通 2620818
什么是DOI,文献DOI怎么找? 1433096
科研通“疑难数据库(出版商)”最低求助积分说明 664837
邀请新用户注册赠送积分活动 650217