MSGformer: A multi-scale grid transformer network for 12-lead ECG arrhythmia detection

计算机科学 模式识别(心理学) 人工智能 特征提取 网格 变压器 数据挖掘 波形 比例(比率) 机器学习 电压 工程类 数学 几何学 电气工程 电信 雷达 物理 量子力学
作者
Changqing Ji,Liyong Wang,Jing Qin,Lu Liu,Yue Han,Zumin Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105499-105499 被引量:32
标识
DOI:10.1016/j.bspc.2023.105499
摘要

The electrocardiogram (ECG) is a ubiquitous medical diagnostic tool employed to identify arrhythmias that are characterized by anomalous waveform morphology and erratic intervals. Current ECG analysis methods primarily rely on the feature extraction of single leads or scales, thereby overlooking the critical complementary data obtainable from multiple channels and scales. This paper introduces the Multi-Scale Grid Transformer (MSGformer) network, which extracts spatial features from limb and chest leads and employs a multi-scale grid attention mechanism to capture temporal features. The self-attention mechanism-based multi-lead feature fusion approach leverages diverse leads’ perspectives to reflect each lead’s heart’s comprehensive state and extract unique essential features. Furthermore, MSGformer incorporates a multi-scale grid attention feature extraction strategy that employs multi-head and multi-scale attention mechanisms to extract multi-scale temporal features from two dimensions. The MSGformer network combines these feature extraction strategies, resulting in simultaneous capturing of morphological characteristics across different leads and temporal characteristics within the same lead in ECG. This integration facilitates the effective detection of morphological abnormalities and erratic intervals in cardiac electrical activity. Utilizing the publicly available 2018 China Physiological Signal Challenge (CPSC 2018) and MIT-BIH electrocardiogram datasets, the performance of MSGformer was evaluated and compared to existing ECG classification models. Experimental results demonstrate that MSGformer achieved an F1 score of 0.86, while on the MIT-BIH dataset, it attained accuracy, sensitivity, and positive predictive value of 99.28%, 97.13%, and 97.87%, respectively, outperforming other current models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Liu发布了新的文献求助10
1秒前
1秒前
今夕何夕完成签到,获得积分10
2秒前
一木张发布了新的文献求助10
3秒前
咖啡不苦发布了新的文献求助10
4秒前
科研通AI6应助wangxy采纳,获得10
4秒前
zhouxiuqing完成签到 ,获得积分10
4秒前
归尘发布了新的文献求助10
4秒前
guo发布了新的文献求助10
5秒前
5秒前
上官若男应助今夕何夕采纳,获得10
5秒前
李哈哈发布了新的文献求助10
6秒前
sss完成签到 ,获得积分10
6秒前
冷艳的寻冬完成签到,获得积分10
7秒前
呀呀呀完成签到,获得积分10
8秒前
8秒前
爱吃冰糖葫芦完成签到,获得积分20
8秒前
8秒前
desperado完成签到,获得积分10
9秒前
9秒前
9秒前
Criminology34应助好运来采纳,获得10
9秒前
vdfr完成签到,获得积分10
10秒前
MJJJ发布了新的文献求助30
10秒前
111完成签到,获得积分10
10秒前
CodeCraft应助LLLLL采纳,获得10
11秒前
Liu完成签到,获得积分20
11秒前
秀丽千山完成签到,获得积分10
11秒前
12秒前
Jasper应助熊研研采纳,获得30
12秒前
12秒前
12秒前
Jasper应助庾稀采纳,获得10
12秒前
13秒前
DavidSun发布了新的文献求助10
13秒前
11111发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
hrpppp发布了新的文献求助50
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488