MSGformer: A multi-scale grid transformer network for 12-lead ECG arrhythmia detection

计算机科学 模式识别(心理学) 人工智能 特征提取 网格 变压器 数据挖掘 波形 比例(比率) 机器学习 电压 工程类 数学 几何学 电气工程 电信 雷达 物理 量子力学
作者
Changqing Ji,Liyong Wang,Jing Qin,Lu Liu,Yue Han,Zumin Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105499-105499 被引量:32
标识
DOI:10.1016/j.bspc.2023.105499
摘要

The electrocardiogram (ECG) is a ubiquitous medical diagnostic tool employed to identify arrhythmias that are characterized by anomalous waveform morphology and erratic intervals. Current ECG analysis methods primarily rely on the feature extraction of single leads or scales, thereby overlooking the critical complementary data obtainable from multiple channels and scales. This paper introduces the Multi-Scale Grid Transformer (MSGformer) network, which extracts spatial features from limb and chest leads and employs a multi-scale grid attention mechanism to capture temporal features. The self-attention mechanism-based multi-lead feature fusion approach leverages diverse leads’ perspectives to reflect each lead’s heart’s comprehensive state and extract unique essential features. Furthermore, MSGformer incorporates a multi-scale grid attention feature extraction strategy that employs multi-head and multi-scale attention mechanisms to extract multi-scale temporal features from two dimensions. The MSGformer network combines these feature extraction strategies, resulting in simultaneous capturing of morphological characteristics across different leads and temporal characteristics within the same lead in ECG. This integration facilitates the effective detection of morphological abnormalities and erratic intervals in cardiac electrical activity. Utilizing the publicly available 2018 China Physiological Signal Challenge (CPSC 2018) and MIT-BIH electrocardiogram datasets, the performance of MSGformer was evaluated and compared to existing ECG classification models. Experimental results demonstrate that MSGformer achieved an F1 score of 0.86, while on the MIT-BIH dataset, it attained accuracy, sensitivity, and positive predictive value of 99.28%, 97.13%, and 97.87%, respectively, outperforming other current models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zl发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
2秒前
Lee发布了新的文献求助10
3秒前
3秒前
小米发布了新的文献求助10
3秒前
4秒前
4秒前
Feeling完成签到,获得积分10
4秒前
5秒前
6秒前
李健应助kk采纳,获得10
6秒前
7秒前
sy完成签到,获得积分20
7秒前
深情安青应助y_y采纳,获得10
8秒前
8秒前
高高难胜发布了新的文献求助10
9秒前
知韵墨客发布了新的文献求助10
9秒前
enterdawn完成签到,获得积分10
10秒前
sy发布了新的文献求助10
10秒前
枫丶完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
T拐拐发布了新的文献求助10
12秒前
英俊的铭应助满意的不二采纳,获得10
12秒前
13秒前
wanci应助文艺的老虎采纳,获得30
13秒前
希望天下0贩的0应助Lee采纳,获得10
14秒前
14秒前
yyk完成签到,获得积分10
14秒前
15秒前
宇少爱学习哟完成签到,获得积分10
15秒前
美满的红酒完成签到 ,获得积分10
15秒前
自由的酸奶完成签到,获得积分10
15秒前
共享精神应助知韵墨客采纳,获得10
15秒前
烟花应助sy采纳,获得10
16秒前
Jasper应助养狗了没有采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484143
求助须知:如何正确求助?哪些是违规求助? 4584418
关于积分的说明 14397830
捐赠科研通 4514421
什么是DOI,文献DOI怎么找? 2473992
邀请新用户注册赠送积分活动 1459944
关于科研通互助平台的介绍 1433349