清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FuXi-Extreme: Improving extreme rainfall and wind forecasts with diffusion model

气候学 热带气旋 极端天气 气象学 概率逻辑 模型输出统计 黑天鹅理论 降水 环境科学 计算机科学 数值天气预报 统计 数学 气候变化 人工智能 地理 地质学 海洋学
作者
Xiaohui Zhong,Lei Chen,Jun Liu,Chensen Lin,Qi Yuan,Hao Li
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2310.19822
摘要

Significant advancements in the development of machine learning (ML) models for weather forecasting have produced remarkable results. State-of-the-art ML-based weather forecast models, such as FuXi, have demonstrated superior statistical forecast performance in comparison to the high-resolution forecasts (HRES) of the European Centre for Medium-Range Weather Forecasts (ECMWF). However, ML models face a common challenge: as forecast lead times increase, they tend to generate increasingly smooth predictions, leading to an underestimation of the intensity of extreme weather events. To address this challenge, we developed the FuXi-Extreme model, which employs a denoising diffusion probabilistic model (DDPM) to restore finer-scale details in the surface forecast data generated by the FuXi model in 5-day forecasts. An evaluation of extreme total precipitation ($\textrm{TP}$), 10-meter wind speed ($\textrm{WS10}$), and 2-meter temperature ($\textrm{T2M}$) illustrates the superior performance of FuXi-Extreme over both FuXi and HRES. Moreover, when evaluating tropical cyclone (TC) forecasts based on International Best Track Archive for Climate Stewardship (IBTrACS) dataset, both FuXi and FuXi-Extreme shows superior performance in TC track forecasts compared to HRES, but they show inferior performance in TC intensity forecasts in comparison to HRES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
川藏客完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
18秒前
房天川完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
55秒前
wangfaqing942完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Silence完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hihi发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
爱静静应助mt13采纳,获得100
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
紫熊发布了新的文献求助10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661079
求助须知:如何正确求助?哪些是违规求助? 3222233
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538