Air traffic controllers' mental fatigue recognition: A multi-sensor information fusion-based deep learning approach

计算机科学 空中交通管制 人工智能 更安全的 无人机 特征(语言学) 深度学习 无线传感器网络 传感器融合 认知 机器学习 模式识别(心理学) 工程类 计算机网络 语言学 哲学 计算机安全 神经科学 生物 遗传学 航空航天工程
作者
Xiaoqing Yu,Chun‐Hsien Chen,Haohan Yang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:57: 102123-102123 被引量:6
标识
DOI:10.1016/j.aei.2023.102123
摘要

With the growing density of air passenger traffic, accurately recognizing the level of mental fatigue (MF) experienced by air traffic controllers (ATCOs) is crucial for developing intelligent ATCOs' mental state monitoring systems, which can achieve a more effective and safer human–machine cooperative pattern. However, the existing methods for recognizing ATCOs' MF face significant challenges due to pattern variations between ATCOs and sensor artifacts. This study introduces a framework for ATCOs' MF recognition, utilizing a deep neural network called RecMF, which incorporates multi-sensor information fusion to enhance the performance of MF detection. Specifically, the RecMF employs an attention-enabled CNN-LSTM architecture that simultaneously captures time-series feature representations of electroencephalogram (EEG) signals and eye movements. To validate the effectiveness of RecMF, a fatigue-inducing experiment is conducted involving 28 subjects who are tasked with performing a series of air traffic control (ATC) tasks. The model's performance is evaluated across various time horizons and typical cognitive tasks to gain insights into its capabilities. The evaluation results indicate that the proposed model outperforms other existing methods, thereby confirming its feasibility and effectiveness. Additionally, the effects of MF on ATCOs' cognitive performance are analyzed using analysis of variance (ANOVA). The results reveal that higher levels of MF significantly reduce ATCOs' reaction speed and operational accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
被划分发布了新的文献求助10
1秒前
1秒前
壮壮发布了新的文献求助10
2秒前
cc发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
Linda完成签到,获得积分10
5秒前
众行绘研完成签到 ,获得积分10
5秒前
情怀应助酷酷阑香采纳,获得10
7秒前
Yoki完成签到,获得积分10
7秒前
cc完成签到 ,获得积分10
7秒前
任性惜萱发布了新的文献求助10
7秒前
Lo完成签到,获得积分10
7秒前
8秒前
kk完成签到,获得积分10
8秒前
jennie完成签到,获得积分10
9秒前
9秒前
无端发布了新的文献求助10
10秒前
10秒前
彭于晏应助不晓天采纳,获得10
11秒前
11秒前
siri完成签到,获得积分10
11秒前
糊涂的含卉完成签到,获得积分10
11秒前
CoCo发布了新的文献求助10
12秒前
Huajing_Yang发布了新的文献求助20
12秒前
何毅发布了新的文献求助30
13秒前
被划分完成签到,获得积分10
13秒前
17秒前
lilylch完成签到 ,获得积分10
19秒前
xy给xy的求助进行了留言
19秒前
汉堡包应助小个采纳,获得10
21秒前
ellieou完成签到,获得积分10
21秒前
忆夏应助NVSK采纳,获得10
21秒前
23秒前
立仔完成签到,获得积分10
23秒前
逍遥自在完成签到,获得积分10
23秒前
ellieou发布了新的文献求助10
24秒前
24秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206565
求助须知:如何正确求助?哪些是违规求助? 2856045
关于积分的说明 8102101
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354139
科研通“疑难数据库(出版商)”最低求助积分说明 641924
邀请新用户注册赠送积分活动 613167