Air traffic controllers' mental fatigue recognition: A multi-sensor information fusion-based deep learning approach

计算机科学 空中交通管制 人工智能 更安全的 无人机 特征(语言学) 深度学习 无线传感器网络 传感器融合 认知 机器学习 模式识别(心理学) 工程类 计算机网络 语言学 哲学 计算机安全 神经科学 生物 遗传学 航空航天工程
作者
Xiaoqing Yu,Chun‐Hsien Chen,Haohan Yang
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:57: 102123-102123 被引量:6
标识
DOI:10.1016/j.aei.2023.102123
摘要

With the growing density of air passenger traffic, accurately recognizing the level of mental fatigue (MF) experienced by air traffic controllers (ATCOs) is crucial for developing intelligent ATCOs' mental state monitoring systems, which can achieve a more effective and safer human–machine cooperative pattern. However, the existing methods for recognizing ATCOs' MF face significant challenges due to pattern variations between ATCOs and sensor artifacts. This study introduces a framework for ATCOs' MF recognition, utilizing a deep neural network called RecMF, which incorporates multi-sensor information fusion to enhance the performance of MF detection. Specifically, the RecMF employs an attention-enabled CNN-LSTM architecture that simultaneously captures time-series feature representations of electroencephalogram (EEG) signals and eye movements. To validate the effectiveness of RecMF, a fatigue-inducing experiment is conducted involving 28 subjects who are tasked with performing a series of air traffic control (ATC) tasks. The model's performance is evaluated across various time horizons and typical cognitive tasks to gain insights into its capabilities. The evaluation results indicate that the proposed model outperforms other existing methods, thereby confirming its feasibility and effectiveness. Additionally, the effects of MF on ATCOs' cognitive performance are analyzed using analysis of variance (ANOVA). The results reveal that higher levels of MF significantly reduce ATCOs' reaction speed and operational accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
空133发布了新的文献求助10
刚刚
丰富的复天完成签到,获得积分10
刚刚
Nature发布了新的文献求助10
1秒前
kp发布了新的文献求助10
1秒前
1秒前
1秒前
haohoa发布了新的文献求助10
1秒前
2秒前
amo完成签到,获得积分10
2秒前
空凌完成签到,获得积分10
2秒前
2秒前
东晓发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
月岛滴滴完成签到,获得积分10
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
柳絮发布了新的文献求助10
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
llllxj发布了新的文献求助10
3秒前
嘞是举仔应助科研通管家采纳,获得30
3秒前
量子星尘发布了新的文献求助10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
滴滴哩哩完成签到,获得积分10
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
tracywan完成签到,获得积分20
3秒前
Berberin应助科研通管家采纳,获得10
3秒前
ziyue发布了新的文献求助10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
苏菲娅完成签到,获得积分10
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699126
求助须知:如何正确求助?哪些是违规求助? 5129127
关于积分的说明 15224490
捐赠科研通 4854057
什么是DOI,文献DOI怎么找? 2604442
邀请新用户注册赠送积分活动 1555961
关于科研通互助平台的介绍 1514252