亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Air traffic controllers' mental fatigue recognition: A multi-sensor information fusion-based deep learning approach

计算机科学 空中交通管制 人工智能 更安全的 无人机 特征(语言学) 深度学习 无线传感器网络 传感器融合 认知 机器学习 模式识别(心理学) 工程类 计算机网络 语言学 哲学 计算机安全 神经科学 生物 遗传学 航空航天工程
作者
Xiaoqing Yu,Chun‐Hsien Chen,Haohan Yang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:57: 102123-102123 被引量:6
标识
DOI:10.1016/j.aei.2023.102123
摘要

With the growing density of air passenger traffic, accurately recognizing the level of mental fatigue (MF) experienced by air traffic controllers (ATCOs) is crucial for developing intelligent ATCOs' mental state monitoring systems, which can achieve a more effective and safer human–machine cooperative pattern. However, the existing methods for recognizing ATCOs' MF face significant challenges due to pattern variations between ATCOs and sensor artifacts. This study introduces a framework for ATCOs' MF recognition, utilizing a deep neural network called RecMF, which incorporates multi-sensor information fusion to enhance the performance of MF detection. Specifically, the RecMF employs an attention-enabled CNN-LSTM architecture that simultaneously captures time-series feature representations of electroencephalogram (EEG) signals and eye movements. To validate the effectiveness of RecMF, a fatigue-inducing experiment is conducted involving 28 subjects who are tasked with performing a series of air traffic control (ATC) tasks. The model's performance is evaluated across various time horizons and typical cognitive tasks to gain insights into its capabilities. The evaluation results indicate that the proposed model outperforms other existing methods, thereby confirming its feasibility and effectiveness. Additionally, the effects of MF on ATCOs' cognitive performance are analyzed using analysis of variance (ANOVA). The results reveal that higher levels of MF significantly reduce ATCOs' reaction speed and operational accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助沉默的虔采纳,获得10
6秒前
11秒前
Hung完成签到,获得积分10
14秒前
ZXH发布了新的文献求助10
18秒前
圈哥完成签到,获得积分10
25秒前
小岩完成签到 ,获得积分10
26秒前
28秒前
29秒前
32秒前
Rondab应助科研通管家采纳,获得10
33秒前
Rondab应助科研通管家采纳,获得10
33秒前
Rondab应助科研通管家采纳,获得10
33秒前
Rondab应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
Rondab应助科研通管家采纳,获得10
34秒前
Rondab应助科研通管家采纳,获得10
34秒前
34秒前
六六完成签到 ,获得积分10
37秒前
38秒前
简单完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
沉默的虔发布了新的文献求助10
43秒前
HuiHui完成签到,获得积分10
51秒前
1分钟前
念0完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
TT发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
zjc发布了新的文献求助10
1分钟前
sqb发布了新的文献求助10
1分钟前
ding应助高贵小兔子采纳,获得30
1分钟前
1分钟前
1分钟前
沉默的虔完成签到,获得积分10
1分钟前
1分钟前
第五点完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960053
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128492
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789595
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056