DAformer: Transformer with Domain Adversarial Adaptation for EEG-Based Emotion Recognition with Live-Oil Paintings

绘画 计算机科学 脑电图 变压器 情绪识别 人工智能 油画 适应(眼睛) 认知心理学 心理学 艺术 视觉艺术 工程类 电压 精神科 神经科学 电气工程
作者
Zhongwei Jin,Jiawen Liu,Wei‐Long Zheng,Bao-Liang Lu
出处
期刊:Communications in computer and information science 卷期号:: 402-414
标识
DOI:10.1007/978-981-99-8138-0_32
摘要

The emergence of domain adaptation has brought remarkable advancement to EEG-based emotion recognition by reducing subject variability thus increasing the accuracy of cross-subject tasks. A wide variety of materials have been employed to elicit emotions in experiments, however, artistic works that aim to evoke emotional resonance of observers are relatively less frequently utilized. Previous research has shown promising results in electroencephalogram(EEG)-based emotion recognition on static oil paintings. As video clips are widely recognized as the most commonly used and effective stimuli, we adopted animated live oil paintings, a novel set of emotional stimuli in the live form which are essentially a type of video clip while possessing fewer potential influencing factors for EEG signals compared to traditional video clips, such as abrupt switches on background sound, contrast, and color tones. Moreover, previous studies on static oil paintings focused primarily on the subject-dependent task, and further research involving cross-subject analysis remains to be investigated. In this paper, we proposed a novel DAformer model which combines the advantages of Transformer and adversarial learning. In order to enhance the evocative performance of oil paintings, we introduced a type of innovative emotional stimuli by transforming static oil paintings into animated live forms. We developed a new emotion dataset SEED-LOP (SJTU EEG Emotion Dataset-Live Oil Painting) and constructed DAformer to verify the effectiveness of SEED-LOP. The results demonstrated higher accuracies in three-class emotion recognition tasks when watching live oil paintings, with a subject-dependent accuracy achieving 61.73% and a cross-subject accuracy reaching 54.12%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助陶治采纳,获得10
1秒前
小文cremen完成签到 ,获得积分10
3秒前
chen1999完成签到,获得积分10
3秒前
今后应助hyw采纳,获得10
3秒前
执着完成签到,获得积分10
4秒前
小爽完成签到,获得积分10
5秒前
马天垚完成签到,获得积分20
5秒前
kobesakura完成签到,获得积分20
7秒前
海森堡完成签到,获得积分10
8秒前
焦糖完成签到,获得积分10
8秒前
perth发布了新的文献求助10
9秒前
lvvyy126完成签到,获得积分10
9秒前
9秒前
来日方长应助chen1999采纳,获得10
9秒前
陶治完成签到,获得积分10
9秒前
赘婿应助马天垚采纳,获得10
10秒前
mendicant完成签到,获得积分10
10秒前
10秒前
然然完成签到,获得积分10
11秒前
MIRROR发布了新的文献求助100
12秒前
科研小白发布了新的文献求助10
14秒前
hyw发布了新的文献求助10
15秒前
Gao小白完成签到 ,获得积分10
20秒前
Bottle完成签到,获得积分10
20秒前
张朝程完成签到,获得积分10
22秒前
寻道图强应助安东晨晨采纳,获得30
24秒前
25秒前
呆呆完成签到,获得积分10
26秒前
淡淡从蕾完成签到,获得积分10
27秒前
余地完成签到 ,获得积分10
27秒前
来都来了完成签到,获得积分10
27秒前
第一张发布了新的文献求助10
28秒前
事事顺利完成签到,获得积分10
29秒前
wyx完成签到,获得积分10
30秒前
虚幻灵薇完成签到 ,获得积分10
31秒前
zzh完成签到,获得积分10
32秒前
烟花应助第一张采纳,获得10
33秒前
清秀迎松完成签到,获得积分10
33秒前
平淡的碧菡完成签到,获得积分10
36秒前
隐形曼青应助曾无忧采纳,获得10
37秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175