Analyzing multi-factor effects on travel well-being, including non-linear relationship and interaction

梯度升压 旅游行为 中国 运输工程 钥匙(锁) 旅游调查 决策树 计算机科学 桥(图论) 随机森林 业务 运筹学 地理 工程类 人工智能 医学 内科学 考古 计算机安全
作者
Hongmei Yu,Xiaofei Ye,Lining Liu,Tao Wang,Xingchen Yan,Jun Chen,Bin Ran
出处
期刊:Transportation Planning and Technology [Taylor & Francis]
卷期号:47 (3): 419-447 被引量:1
标识
DOI:10.1080/03081060.2023.2285456
摘要

Enhancing the travel well-being of commuters is crucial for the sustainable development of urban transportation and requires a clear understanding of the factors. However, existing research on the factors affecting travel well-being has not considered travel disturbance. This research adds travel disturbance and effort to a survey in Ningbo, China. Using this dataset, machine learning algorithms were employed to explore the complex relationship of seven variables on commuters' travel well-being. The results demonstrated machine learning algorithms such as Gradient Boosting Decision Tree and Random Forest outperform traditional linear regressions in analyzing travel well-being. The study identified built environment (Relative Importance = 24.6%) and affective effort (Relative Importance = 17.2%) were key determinants of travel well-being. Non-linear relationship between key variables and travel well-being was also investigated, and revealing a complex interaction between these variables. This research could help transportation managers provide more targeted and efficient suggestions to increase urban commuters' travel well-being.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉玉颓山完成签到,获得积分10
1秒前
1秒前
gogoyoco发布了新的文献求助10
2秒前
山茶关注了科研通微信公众号
3秒前
wuhan完成签到,获得积分10
4秒前
菠菜蟹完成签到,获得积分20
4秒前
luna完成签到,获得积分10
5秒前
6秒前
6秒前
在水一方应助gogoyoco采纳,获得10
7秒前
8秒前
葡萄成熟完成签到,获得积分10
9秒前
酷波er应助科研通管家采纳,获得30
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
浮游应助机智的鲸鱼采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
我是老大应助KIRA采纳,获得10
10秒前
dian应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
不爱吃香菜完成签到 ,获得积分10
11秒前
hyd完成签到,获得积分10
12秒前
之鱼之乐发布了新的文献求助10
13秒前
kingwill应助迟安歌采纳,获得20
13秒前
15秒前
大力晓夏发布了新的文献求助10
15秒前
17秒前
刻苦冰颜完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194661
求助须知:如何正确求助?哪些是违规求助? 4376916
关于积分的说明 13630770
捐赠科研通 4232066
什么是DOI,文献DOI怎么找? 2321384
邀请新用户注册赠送积分活动 1319528
关于科研通互助平台的介绍 1269876