亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-accuracy prediction and compensation of industrial robot stiffness deformation

刚度 关节刚度 计算机科学 变形(气象学) 加权 材料科学 非线性系统 控制理论(社会学) 人工智能 结构工程 算法 工程类 复合材料 声学 物理 控制(管理) 量子力学
作者
Congcong Ye,Jixiang Yang,Han Ding
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:233: 107638-107638 被引量:12
标识
DOI:10.1016/j.ijmecsci.2022.107638
摘要

Industrial robots (IRs) are promising options for machining large complex structural parts due to the higher flexibility, larger operating space, and lower cost compared with multi-axis machine tools. However, the relatively low posture-dependent stiffness and large stiffness deformation of IRs significantly deteriorate the contour accuracy of milling in which the cutting force is large generally. It is very complex to achieve a precise stiffness model and predict stiffness deformation of IRs because of the joint clearance, drift of zero-position, and other nonlinear factors. The conventional stiffness model of IRs only takes each joint as a constant linear torsion spring into consideration and ignores other difficult-to-model factors, which leads to low-accuracy identified results and thereafter induces deformation prediction errors. The data-driven approach can be used to obtain an accurate stiffness and deformation model, but a large amount of experimental data is required and it will cost enormous time and effort. In order to circumvent the experimental data deficiency and difficult-to-model issue, a simulation-driven transfer learning method named Adaptive Domain Adversarial Neural Network with Dual-Regressions (ADANN-2R) is designed for robot deformation prediction. Amounts of coarse deformation data, which are generated by the conventional stiffness model, are regarded as source data. And few real deformation data, which are obtained by deformation experiments, are regarded as target data. The Dual-Regressions are designed after the feature extractor, and the weighting parameters are adjusted adaptively to tackle the different magnitude of the regression loss and domain discrimination loss. The ADANN-2R aligns the simulated source data and real target data to perform adversarial training, and an accurate target deformation predictor is achieved. Experimental results indicate that the proposed ADANN-2R can obtain high-accuracy prediction with few real data compared with the conventional stiffness model. Compared with the path without deformation compensation and the pre-compensated path using the conventional stiffness model, the maximum position error of the pre-compensated path using the proposed ADANN-2R is reduced by 78.12% and 32.45%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nancy0818完成签到 ,获得积分10
2秒前
不去明知山完成签到 ,获得积分10
9秒前
kitty完成签到,获得积分10
23秒前
feiCheung完成签到 ,获得积分10
48秒前
矮小的觅云完成签到 ,获得积分10
50秒前
红油曲奇完成签到,获得积分10
1分钟前
1分钟前
鹤鸣发布了新的文献求助10
2分钟前
鹤鸣完成签到,获得积分10
2分钟前
jyy应助科研通管家采纳,获得10
4分钟前
阿泽完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
东溟渔夫发布了新的文献求助10
5分钟前
nefu biology完成签到,获得积分20
5分钟前
东溟渔夫完成签到,获得积分10
5分钟前
drs完成签到,获得积分10
5分钟前
陈一一完成签到 ,获得积分10
6分钟前
Otter完成签到,获得积分10
6分钟前
jyy应助科研通管家采纳,获得10
6分钟前
见鹰完成签到,获得积分10
8分钟前
见鹰发布了新的文献求助20
8分钟前
8分钟前
汉堡包应助liubo采纳,获得10
8分钟前
科目三应助Original采纳,获得10
8分钟前
9分钟前
风中小刺猬完成签到,获得积分10
9分钟前
Owen应助cindy采纳,获得10
9分钟前
Original发布了新的文献求助10
9分钟前
largpark完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
cindy发布了新的文献求助10
9分钟前
liubo发布了新的文献求助10
9分钟前
Original完成签到,获得积分10
9分钟前
cindy完成签到,获得积分10
9分钟前
爆米花应助科研通管家采纳,获得10
10分钟前
CATH完成签到 ,获得积分10
10分钟前
雨天爱吃冰淇淋完成签到 ,获得积分10
10分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899698
捐赠科研通 2472835
什么是DOI,文献DOI怎么找? 1316528
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142