High-accuracy prediction and compensation of industrial robot stiffness deformation

刚度 关节刚度 计算机科学 变形(气象学) 加权 材料科学 非线性系统 控制理论(社会学) 人工智能 结构工程 算法 工程类 复合材料 声学 物理 控制(管理) 量子力学
作者
Congcong Ye,Jixiang Yang,Han Ding
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:233: 107638-107638 被引量:44
标识
DOI:10.1016/j.ijmecsci.2022.107638
摘要

Industrial robots (IRs) are promising options for machining large complex structural parts due to the higher flexibility, larger operating space, and lower cost compared with multi-axis machine tools. However, the relatively low posture-dependent stiffness and large stiffness deformation of IRs significantly deteriorate the contour accuracy of milling in which the cutting force is large generally. It is very complex to achieve a precise stiffness model and predict stiffness deformation of IRs because of the joint clearance, drift of zero-position, and other nonlinear factors. The conventional stiffness model of IRs only takes each joint as a constant linear torsion spring into consideration and ignores other difficult-to-model factors, which leads to low-accuracy identified results and thereafter induces deformation prediction errors. The data-driven approach can be used to obtain an accurate stiffness and deformation model, but a large amount of experimental data is required and it will cost enormous time and effort. In order to circumvent the experimental data deficiency and difficult-to-model issue, a simulation-driven transfer learning method named Adaptive Domain Adversarial Neural Network with Dual-Regressions (ADANN-2R) is designed for robot deformation prediction. Amounts of coarse deformation data, which are generated by the conventional stiffness model, are regarded as source data. And few real deformation data, which are obtained by deformation experiments, are regarded as target data. The Dual-Regressions are designed after the feature extractor, and the weighting parameters are adjusted adaptively to tackle the different magnitude of the regression loss and domain discrimination loss. The ADANN-2R aligns the simulated source data and real target data to perform adversarial training, and an accurate target deformation predictor is achieved. Experimental results indicate that the proposed ADANN-2R can obtain high-accuracy prediction with few real data compared with the conventional stiffness model. Compared with the path without deformation compensation and the pre-compensated path using the conventional stiffness model, the maximum position error of the pre-compensated path using the proposed ADANN-2R is reduced by 78.12% and 32.45%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
michael发布了新的文献求助10
1秒前
科研通AI6应助何海采纳,获得10
2秒前
3秒前
pp发布了新的文献求助10
3秒前
科研通AI6应助温暖的雨旋采纳,获得10
4秒前
非洲好人发布了新的文献求助10
5秒前
6秒前
QT发布了新的文献求助20
6秒前
东郭雁梅完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
12秒前
12秒前
13秒前
future完成签到 ,获得积分10
13秒前
Lynette发布了新的文献求助10
14秒前
赵赵发布了新的文献求助10
14秒前
FashionBoy应助qianye采纳,获得10
15秒前
超帅的盼完成签到 ,获得积分10
16秒前
吞吞发布了新的文献求助10
17秒前
东郭雁梅发布了新的文献求助10
17秒前
现代破茧发布了新的文献求助10
18秒前
18秒前
CipherSage应助赵赵采纳,获得10
19秒前
我是老大应助michael采纳,获得10
22秒前
枕星完成签到 ,获得积分10
22秒前
23秒前
23秒前
23秒前
QT完成签到,获得积分10
25秒前
星辰大海应助谨慎的凝丝采纳,获得10
26秒前
充电宝应助果冻采纳,获得10
26秒前
lalala完成签到,获得积分10
26秒前
qianye发布了新的文献求助10
27秒前
闰土完成签到,获得积分10
27秒前
28秒前
gan关注了科研通微信公众号
30秒前
默默善愁完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284315
求助须知:如何正确求助?哪些是违规求助? 4437842
关于积分的说明 13815150
捐赠科研通 4318810
什么是DOI,文献DOI怎么找? 2370658
邀请新用户注册赠送积分活动 1366010
关于科研通互助平台的介绍 1329507