High-accuracy prediction and compensation of industrial robot stiffness deformation

刚度 关节刚度 计算机科学 变形(气象学) 加权 材料科学 非线性系统 控制理论(社会学) 人工智能 结构工程 算法 工程类 复合材料 声学 物理 控制(管理) 量子力学
作者
Congcong Ye,Jixiang Yang,Han Ding
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:233: 107638-107638 被引量:44
标识
DOI:10.1016/j.ijmecsci.2022.107638
摘要

Industrial robots (IRs) are promising options for machining large complex structural parts due to the higher flexibility, larger operating space, and lower cost compared with multi-axis machine tools. However, the relatively low posture-dependent stiffness and large stiffness deformation of IRs significantly deteriorate the contour accuracy of milling in which the cutting force is large generally. It is very complex to achieve a precise stiffness model and predict stiffness deformation of IRs because of the joint clearance, drift of zero-position, and other nonlinear factors. The conventional stiffness model of IRs only takes each joint as a constant linear torsion spring into consideration and ignores other difficult-to-model factors, which leads to low-accuracy identified results and thereafter induces deformation prediction errors. The data-driven approach can be used to obtain an accurate stiffness and deformation model, but a large amount of experimental data is required and it will cost enormous time and effort. In order to circumvent the experimental data deficiency and difficult-to-model issue, a simulation-driven transfer learning method named Adaptive Domain Adversarial Neural Network with Dual-Regressions (ADANN-2R) is designed for robot deformation prediction. Amounts of coarse deformation data, which are generated by the conventional stiffness model, are regarded as source data. And few real deformation data, which are obtained by deformation experiments, are regarded as target data. The Dual-Regressions are designed after the feature extractor, and the weighting parameters are adjusted adaptively to tackle the different magnitude of the regression loss and domain discrimination loss. The ADANN-2R aligns the simulated source data and real target data to perform adversarial training, and an accurate target deformation predictor is achieved. Experimental results indicate that the proposed ADANN-2R can obtain high-accuracy prediction with few real data compared with the conventional stiffness model. Compared with the path without deformation compensation and the pre-compensated path using the conventional stiffness model, the maximum position error of the pre-compensated path using the proposed ADANN-2R is reduced by 78.12% and 32.45%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Night完成签到,获得积分10
刚刚
十三发布了新的文献求助10
刚刚
一杯月光完成签到,获得积分10
刚刚
you发布了新的文献求助10
1秒前
江南逢李龟年完成签到,获得积分10
1秒前
1秒前
小欣穗穗完成签到,获得积分10
1秒前
mo完成签到,获得积分10
2秒前
2秒前
2秒前
5256673563完成签到,获得积分10
2秒前
3秒前
123完成签到,获得积分10
3秒前
H28G发布了新的文献求助10
3秒前
彭天乐完成签到,获得积分10
4秒前
李爱国应助虚心沂采纳,获得10
4秒前
4秒前
爆米花应助张一一采纳,获得10
4秒前
辛羽嘉发布了新的文献求助10
5秒前
搞份炸鸡778完成签到,获得积分10
5秒前
繁荣的觅儿完成签到,获得积分10
5秒前
Kay完成签到,获得积分10
5秒前
妮妮完成签到,获得积分10
6秒前
明研完成签到,获得积分10
6秒前
A爷有特点完成签到 ,获得积分10
6秒前
6秒前
浮游应助蚂蚁牙黑采纳,获得10
6秒前
小白完成签到 ,获得积分10
6秒前
7秒前
lllm完成签到,获得积分10
7秒前
橘酥酥呀发布了新的文献求助10
7秒前
mui发布了新的文献求助10
7秒前
7秒前
既望发布了新的文献求助10
7秒前
顾矜应助盛小铃采纳,获得10
8秒前
车厘子发布了新的文献求助10
8秒前
搜集达人应助728采纳,获得10
9秒前
痞老板完成签到,获得积分10
10秒前
10秒前
liu完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4946912
求助须知:如何正确求助?哪些是违规求助? 4210925
关于积分的说明 13091694
捐赠科研通 3991925
什么是DOI,文献DOI怎么找? 2185283
邀请新用户注册赠送积分活动 1200695
关于科研通互助平台的介绍 1114249