亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning models predict lymph node metastasis in patients with stage T1-T2 esophageal squamous cell carcinoma

医学 阶段(地层学) 接收机工作特性 食管鳞状细胞癌 食管切除术 特征选择 T级 淋巴结 内科学 机器学习 肿瘤科 算法 人工智能 食管癌 癌症 计算机科学 生物 古生物学
作者
Donglin Li,Lin Zhang,Hang Yan,Yin-Bin Zheng,Xiaoguang Guo,Shengjie Tang,Hai Hu,Hang Yan,Chao Qin,Jun Zhang,Haiyang Guo,Hai-ning Zhou,Dong Tian
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:2
标识
DOI:10.3389/fonc.2022.986358
摘要

For patients with stage T1-T2 esophageal squamous cell carcinoma (ESCC), accurately predicting lymph node metastasis (LNM) remains challenging. We aimed to investigate the performance of machine learning (ML) models for predicting LNM in patients with stage T1-T2 ESCC.Patients with T1-T2 ESCC at three centers between January 2014 and December 2019 were included in this retrospective study and divided into training and external test sets. All patients underwent esophagectomy and were pathologically examined to determine the LNM status. Thirty-six ML models were developed using six modeling algorithms and six feature selection techniques. The optimal model was determined by the bootstrap method. An external test set was used to further assess the model's generalizability and effectiveness. To evaluate prediction performance, the area under the receiver operating characteristic curve (AUC) was applied.Of the 1097 included patients, 294 (26.8%) had LNM. The ML models based on clinical features showed good predictive performance for LNM status, with a median bootstrapped AUC of 0.659 (range: 0.592, 0.715). The optimal model using the naive Bayes algorithm with feature selection by determination coefficient had the highest AUC of 0.715 (95% CI: 0.671, 0.763). In the external test set, the optimal ML model achieved an AUC of 0.752 (95% CI: 0.674, 0.829), which was superior to that of T stage (0.624, 95% CI: 0.547, 0.701).ML models provide good LNM prediction value for stage T1-T2 ESCC patients, and the naive Bayes algorithm with feature selection by determination coefficient performed best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助嘿嘿嘿侦探社采纳,获得10
7秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得30
15秒前
冷静新烟完成签到,获得积分20
26秒前
51秒前
51秒前
啦啦啦完成签到,获得积分10
52秒前
53秒前
徐小树发布了新的文献求助10
56秒前
徐小树发布了新的文献求助10
56秒前
Ying发布了新的文献求助10
56秒前
徐小树发布了新的文献求助10
56秒前
徐小树发布了新的文献求助10
56秒前
徐小树发布了新的文献求助10
56秒前
徐小树发布了新的文献求助10
56秒前
徐小树发布了新的文献求助10
56秒前
徐小树发布了新的文献求助10
56秒前
1分钟前
田様应助徐小树采纳,获得10
1分钟前
科研通AI5应助徐小树采纳,获得10
1分钟前
1分钟前
徐小树发布了新的文献求助10
2分钟前
2分钟前
2分钟前
xbb88发布了新的文献求助10
2分钟前
xbb88发布了新的文献求助10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
tttttttttttt完成签到,获得积分20
2分钟前
tttttttttttt关注了科研通微信公众号
2分钟前
2分钟前
徐小树发布了新的文献求助10
2分钟前
灵巧的大开完成签到,获得积分10
3分钟前
徐小树发布了新的文献求助10
3分钟前
Getlogger完成签到,获得积分10
3分钟前
3分钟前
Orange应助徐小树采纳,获得10
3分钟前
深情安青应助徐小树采纳,获得10
3分钟前
天天快乐应助徐小树采纳,获得10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968469
求助须知:如何正确求助?哪些是违规求助? 3513259
关于积分的说明 11167119
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794360
邀请新用户注册赠送积分活动 875027
科研通“疑难数据库(出版商)”最低求助积分说明 804629