Analysis of Current Deep Learning Networks for Semantic Segmentation of Anatomical Structures in Laparoscopic Surgery

分割 掷骰子 计算机科学 Sørensen–骰子系数 人工智能 深度学习 水准点(测量) 任务(项目管理) 腹腔镜手术 图像分割 模式识别(心理学) 计算机视觉 腹腔镜检查 外科 医学 地图学 几何学 数学 管理 经济 地理
作者
Bruno Silva,Bruno Oliveira,Pedro Morais,L.R Buschle,Jorge Correia‐Pinto,Estêvão Lima,João L. Vilaça
标识
DOI:10.1109/embc48229.2022.9871583
摘要

Semantic segmentation of anatomical structures in laparoscopic videos is a crucial task to enable the development of new computer-assisted systems that can assist surgeons during surgery. However, this is a difficult task due to artifacts and similar visual characteristics of anatomical structures on the laparoscopic videos. Recently, deep learning algorithms have been showed promising results on the segmentation of laparoscopic instruments. However, due to the lack of large public datasets for semantic segmentation of anatomical structures, there are only a few studies on this task. In this work, we evaluate the performance of five networks, namely U-Net, U-Net++, DynUNet, UNETR and DeepLabV3+, for segmentation of laparoscopic cholecystectomy images from the recently released CholecSeg8k dataset. To the best of our knowledge, this is the first benchmark performed on this dataset. Training was performed with dice loss. The networks were evaluated on segmentation of 8 anatomical structures and instruments, performance was quantified through the dice coefficient, intersection over union, recall, and precision. Apart from the U-Net, all networks obtained scores similar to each other, with the U-Net++ being the network with the best overall score with a mean Dice value of 0.62. Overall, the results show that there is still room for improvement in the segmentation of anatomical structures from laparoscopic videos. Clinical Relevance- The results of this study show the potential of deep neural networks for the segmentation of anatomical structures in laparoscopic images which can later be incorporated into computer-aided systems for surgeons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
1秒前
2秒前
我是老大应助开心的访卉采纳,获得10
3秒前
奶盖呀发布了新的文献求助10
3秒前
完美世界应助了该采纳,获得10
3秒前
隐形曼青应助pharrah采纳,获得10
3秒前
小兵发布了新的文献求助10
3秒前
可爱的函函应助kmo采纳,获得10
6秒前
刘三哥完成签到 ,获得积分10
6秒前
Mm林完成签到 ,获得积分10
6秒前
培风发布了新的文献求助10
6秒前
7秒前
Lucas应助综述王采纳,获得10
7秒前
CipherSage应助我被猪艾特了采纳,获得10
8秒前
忧郁的研完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助30
8秒前
燕一刀完成签到,获得积分10
9秒前
9秒前
9秒前
yar应助轩辕寄风采纳,获得10
10秒前
10秒前
马轩发布了新的文献求助10
11秒前
11秒前
汉堡包应助foxp3采纳,获得10
11秒前
所所应助奶盖呀采纳,获得10
12秒前
12秒前
万文涛完成签到,获得积分10
12秒前
燕一刀发布了新的文献求助10
12秒前
熊i发布了新的文献求助10
13秒前
思源应助小果叮采纳,获得10
13秒前
14秒前
pharrah发布了新的文献求助10
14秒前
培风完成签到,获得积分10
15秒前
空帆船完成签到,获得积分10
16秒前
16秒前
kingwill发布了新的文献求助20
17秒前
18秒前
18秒前
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152