Analysis of Current Deep Learning Networks for Semantic Segmentation of Anatomical Structures in Laparoscopic Surgery

分割 掷骰子 计算机科学 Sørensen–骰子系数 人工智能 深度学习 水准点(测量) 任务(项目管理) 腹腔镜手术 图像分割 模式识别(心理学) 计算机视觉 腹腔镜检查 外科 医学 地图学 经济 数学 管理 地理 几何学
作者
Bruno Silva,Bruno Oliveira,Pedro Morais,L.R Buschle,Jorge Correia‐Pinto,Estêvão Lima,João L. Vilaça
标识
DOI:10.1109/embc48229.2022.9871583
摘要

Semantic segmentation of anatomical structures in laparoscopic videos is a crucial task to enable the development of new computer-assisted systems that can assist surgeons during surgery. However, this is a difficult task due to artifacts and similar visual characteristics of anatomical structures on the laparoscopic videos. Recently, deep learning algorithms have been showed promising results on the segmentation of laparoscopic instruments. However, due to the lack of large public datasets for semantic segmentation of anatomical structures, there are only a few studies on this task. In this work, we evaluate the performance of five networks, namely U-Net, U-Net++, DynUNet, UNETR and DeepLabV3+, for segmentation of laparoscopic cholecystectomy images from the recently released CholecSeg8k dataset. To the best of our knowledge, this is the first benchmark performed on this dataset. Training was performed with dice loss. The networks were evaluated on segmentation of 8 anatomical structures and instruments, performance was quantified through the dice coefficient, intersection over union, recall, and precision. Apart from the U-Net, all networks obtained scores similar to each other, with the U-Net++ being the network with the best overall score with a mean Dice value of 0.62. Overall, the results show that there is still room for improvement in the segmentation of anatomical structures from laparoscopic videos. Clinical Relevance- The results of this study show the potential of deep neural networks for the segmentation of anatomical structures in laparoscopic images which can later be incorporated into computer-aided systems for surgeons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
一郭红烧肉完成签到,获得积分20
2秒前
合适的平安完成签到 ,获得积分10
3秒前
高高白曼舞完成签到,获得积分10
6秒前
malistm完成签到,获得积分10
11秒前
rkay完成签到,获得积分10
11秒前
Islandkwaii完成签到 ,获得积分10
13秒前
13秒前
19秒前
Sunshine完成签到 ,获得积分10
19秒前
好运连连完成签到 ,获得积分10
19秒前
合适的自行车完成签到 ,获得积分10
19秒前
19秒前
花海发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
鲁卓林发布了新的文献求助10
25秒前
LJJ完成签到 ,获得积分10
26秒前
SeaShine677完成签到,获得积分10
27秒前
科研小垃圾完成签到,获得积分10
29秒前
有魅力的桐完成签到,获得积分10
30秒前
attention完成签到,获得积分10
32秒前
38秒前
量子星尘发布了新的文献求助10
39秒前
40秒前
April完成签到,获得积分10
40秒前
东北三省完成签到,获得积分10
40秒前
糖炒栗子完成签到 ,获得积分10
42秒前
糖炒栗子完成签到 ,获得积分10
42秒前
王九八发布了新的文献求助10
44秒前
zzl7337完成签到,获得积分10
45秒前
胡金涛完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
画龙点睛完成签到 ,获得积分10
50秒前
电子医学小书包完成签到 ,获得积分10
56秒前
56秒前
58秒前
58秒前
58秒前
58秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796286
求助须知:如何正确求助?哪些是违规求助? 5775163
关于积分的说明 15491606
捐赠科研通 4923302
什么是DOI,文献DOI怎么找? 2650299
邀请新用户注册赠送积分活动 1597526
关于科研通互助平台的介绍 1552158