Effective Pan-Sharpening by Multiscale Invertible Neural Network and Heterogeneous Task Distilling

锐化 计算机科学 基本事实 人工智能 人工神经网络 编码器 特征(语言学) 计算机视觉 模式识别(心理学) 哲学 语言学 操作系统
作者
Man Zhou,Jie Huang,Xueyang Fu,Feng Zhao,Danfeng Hong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-14 被引量:33
标识
DOI:10.1109/tgrs.2022.3199210
摘要

As recognized, the ground truth multi-spectral (MS) images possess the complementary information (e.g., high-frequency component) of low-resolution (LR) MS images, which can be considered as privileged information to alleviate the spectral distortion and insufficient spatial texture enhancement. Since existing supervised pan-sharpening methods only utilize the ground truth MS image to supervise the network training, its potential value has not been fully explored. To accomplish this, we propose a heterogeneous knowledge-distilling pan-sharpening framework that distills pan-sharpening by imitating the ground truth reconstruction task in both the feature space and network output. In our work, the teacher network performs as a variational auto-encoder to extract effective features of the ground truth MS. The student network, acting as pan-sharpening, is trained by the assistance of the teacher network with the process-oriented feature imitation learning. Moreover, we design a customized information-lossless multi-scale invertible neural module to effectively fuse LR-MS and panchromatic (PAN) images, producing expected pan-sharpened results. To reduce the artifacts generated by the knowledge distillation process, a knowledge-driven refinement sub-network is further devised according to the pan-sharpening imaging model. Extensive experimental results on different satellite datasets validate that the proposed network outperforms the state-of-the-art methods both visually and quantitatively. The source code will be released at https://github.com/manman1995/pansharpening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zengyiyong发布了新的文献求助50
1秒前
1秒前
默默冬瓜完成签到,获得积分20
2秒前
小蘑菇应助小猪啵比采纳,获得10
2秒前
Xixi发布了新的文献求助10
7秒前
7秒前
8秒前
DSH完成签到,获得积分10
9秒前
郎治宇完成签到,获得积分10
9秒前
Sccj完成签到,获得积分10
9秒前
10秒前
希望天下0贩的0应助L_nan采纳,获得10
11秒前
姜姜姜完成签到 ,获得积分10
11秒前
zengyiyong完成签到,获得积分10
12秒前
九日橙发布了新的文献求助30
13秒前
14秒前
xpd发布了新的文献求助10
14秒前
李半斤发布了新的文献求助10
14秒前
15秒前
狂野吐司完成签到,获得积分10
15秒前
16秒前
Lucas应助寻找采纳,获得10
17秒前
17秒前
俊逸的曼岚完成签到,获得积分10
17秒前
碧蓝的睫毛完成签到,获得积分10
18秒前
18秒前
宇子完成签到 ,获得积分10
18秒前
21秒前
21秒前
22秒前
天一发布了新的文献求助10
22秒前
小怪兽完成签到,获得积分10
22秒前
23秒前
23秒前
L_nan发布了新的文献求助10
25秒前
ic完成签到 ,获得积分10
26秒前
sukasuka发布了新的文献求助10
27秒前
27秒前
今后应助尊敬的马里奥采纳,获得10
27秒前
weing发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809520
关于积分的说明 7882540
捐赠科研通 2468075
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943